Performed for:

National Energy of McBain 6751 Gerwoude Drive McBain, MI 49657 Contact: Matt Doolittle Telephone: (231) 825-2772 Ext: 1 Cell: (231) 878-4977 E-mail: matthew.doolittle@nssccorp.com

Performed by:

Network Environmental, Inc. 2629 Remico Street, Suite B Grand Rapids, MI 49519 Contact: David D. Engelhardt Telephone: (616) 530-6330 Fax: (616) 530-0001 E-mail: netenviro@aol.com

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Summary Tables of Results	2
	II.1 Table 1 – Air Flow Results	2
III.	Sampling and Analytical Protocol	3-5
	Figure 1 – Moisture Sampling Train	4
	Figure 2 – Air Flow Sampling Train	5

Appendices

Reference Method Data	A
Calculations	В
Raw Data	С

I. INTRODUCTION

Network Environmental, Inc. was retained by National Energy of McBain, Michigan to perform an air flow study on their wood fired boiler. The purpose of the study was to document the air flow rate from the wood fired boiler under normal operating conditions.

The air flow sampling was performed on August 25, 2023. Richard D. Eerdmans and David D. Engelhardt of Network Environmental, Inc. conducted the sampling in accordance with the following reference test methods:

Exhaust Gas Parameters – U.S. EPA Methods 1 through 4

Assisting with the study were Mr. Matt Doolittle of National Energy McBain and the operating staff of the facility.

II. PRESENTATION OF RESULTS

1

1

I

I

II.1 TABLE 1 AIR FLOW RESULTS WOOD FIRED BOILER EXHAUST NATIONAL ENERGY McBAIN, MICHIGAN AUGUST 25, 2023							
	Time	Air Flow Rates					
Sample		SCFM (1)	DSCFM (2)				
1	14:22-14:33	65,242	53,426				
2	14:43-14:53	65,345	53,511				
3	15:17-15:27	64,023	52,428				
Ave	erage	64,870	53,122				

III. SAMPLING AND ANALYTICAL PROTOCOL

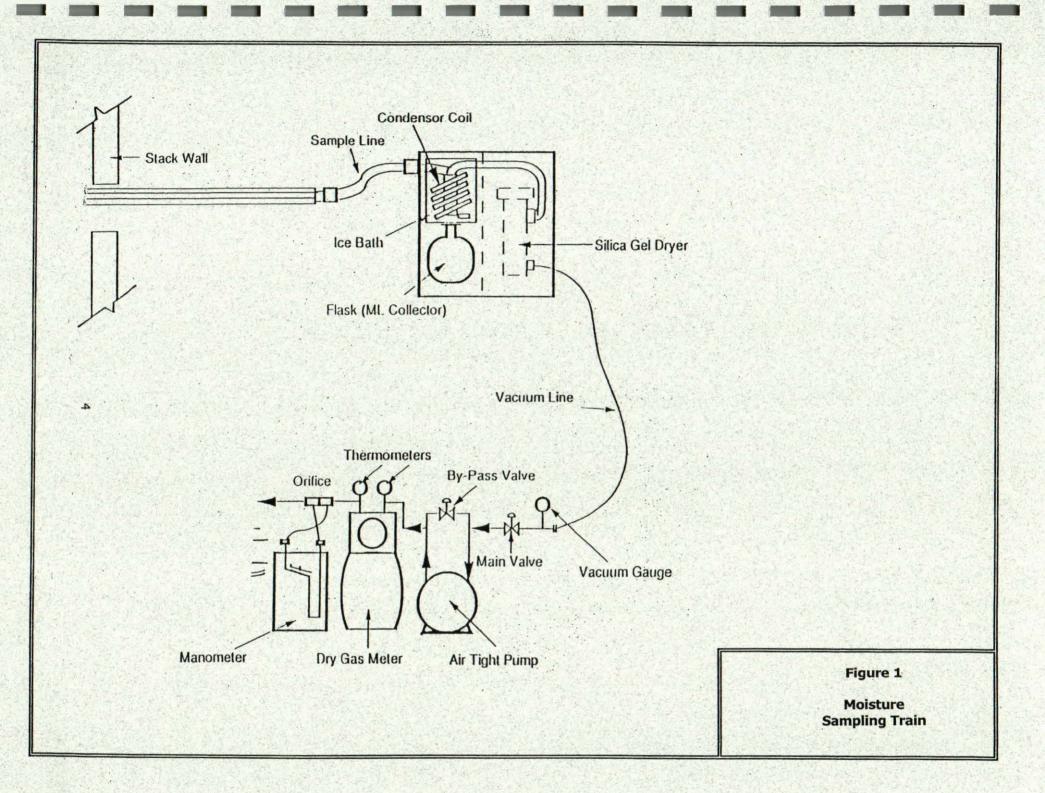
III.1 Moisture – The moisture sample was collected in accordance with U.S. EPA Method 4. The sample was withdrawn from the stack and passed through a condensing coil with drop out before being passed through pre-weighed silica gel. The water collected was measured to the nearest 0.5 ml and the silica gel was re-weighed to the nearest 0.5 g. The moisture collected along with the sample volume was used to determine the percent moisture in the exhaust. The sample was twenty-five (25) minutes in duration and had a minimum sample volume of twenty-one (21) standard cubic feet. A diagram of the moisture sampling train is shown in Figure 1.

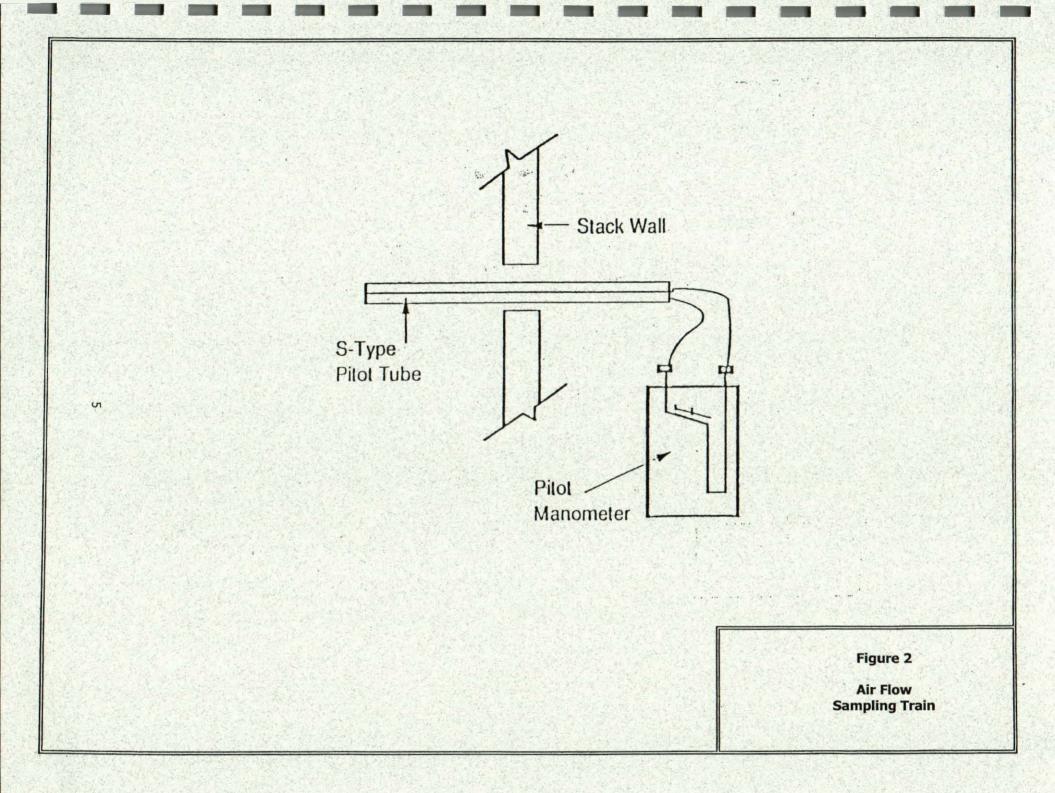
III.2 Air Flows – The air flow rates were determined by employing U.S. EPA Reference Methods 1 and 2. The sampling for the source was conducted on the 71 inch I.D. exhaust stack. A total of 12 traverse points were used for the air flow determinations. The sample point dimensions are shown in Appendix C.

Velocity pressures were determined using an S-Type pitot tube. Temperatures were measured using a Type K thermocouple. A diagram of the air flow sampling train is shown in Figure 2.

III.3 Gas Density – The gas density was determined by obtaining a bag sample from the exhaust of the moisture train and Orsat analysis.

This report was prepared by:


ngelbactt


David D. Engelhardt Vice President

This report was reviewed by:

It largell

R. Scott Cargill Project Manager

