RECEIVED MAY 06 2016 AIR QUALITY DIVISION

Consumers Energy

Count on Us

Filterable Particulate Matter 40 CFR Part 63 Subpart UUUUU LEE Demonstration

EUBOILER01 and 02 T.E.S. Filer City Station

T.E.S. Filer City Station 700 Mee Street Filer City, Michigan 48634 Test Dates: March 7-9, 2016

> May 3, 2016 Work Order No. 4101442

> > **Revision** 0

Test Performed by the Consumers Energy Company Regulatory Compliance Testing Section – Air Emissions Testing Body Laboratory Services Department Written by D.A. King, Engineering Technical Analyst I

N1685_TEST_ J0160307

RECEIVED

MAY 0 6 2016

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

AIR QUALITY DIV.

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penallies.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Environmental Quality, Air Quality Division upon request.

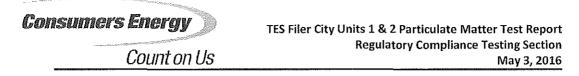
Source Name	CountyManistee
Source Address P.O. Box 12 / 700 Mee Street	Cily Filer City
AQD Source ID (SRN) <u>N1685</u> ROP No. <u>MI-ROP-N1685-2015</u>	ROP Section No. <u>N/A</u>
Please check the appropriate box(es):	ан на полити и полити и полити и на како и полити и на како и
Annual Compliance Certification (Pursuant to Rule 213(4)(c))	
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, this source was in compliance with ALL terms an term and condition of which is identified and included by this reference. The method(s) method(s) specified in the ROP.	
2. During the entire reporting period this source was in compliance with all terms an term and condition of which is identified and included by this reference, EXCEPT for deviation report(s). The method used to determine compliance for each term and conductive unless otherwise indicated and described on the enclosed deviation report(s).	the deviations identified on the enclosed
Semi-Annual (or More Frequent) Report Certification (Pursuant to Rule 213(3)(c))	- 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970
Reporting period (provide inclusive dates): From To 1. During the entire reporting period, ALL monitoring and associated recordkeeping re deviations from these requirements or any other terms or conditions occurred.	equirements in the ROP were met and no
2. During the entire reporting period, all monitoring and associated recordkeeping requirements or any other terms or conditions occurred, EXCEPT enclosed deviation report(s).	uirements in the ROP were met and no F for the deviations identified on the
Other Report Certification	
Reporting period (provide inclusive dates): From 03/07/2016 To	03/09/2016
Additional monitoring reports or other applicable documents required by the ROP are attac Boilers 1 and 2 Mercury and Air Toxics Standard (MATS) Particulate Matter (PM) Test I	1
I certify that, based on information and belief formed after reasonable inquiry, the stateme supporting enclosures are true, accurate and complete	nts and information in this report and the

Henry M. Hoffman	General Manager	231-723-6573
Name of Responsible Official (print or type)	Títle	Phone Number
Henry M. Hellyman-		5-6-16
Signature of Responsible Official		Date

* Photocopy this form as needed.

EQP 5736 (Rev 11-04)

1.0 INTRODUCTION


Consumers Energy Company (CECo) Regulatory Compliance Testing Section (RCTS) performed the Filterable Particulate Matter (FPM) Low Emitting Electric Generating Unit (LEE) demonstration per Subpart UUUUU, 40 CFR Part 63 (commonly referred to as the Mercury and Air Toxics Standard [MATS] Rule) at the stack exhausts associated with emissions units EUBOILER01 (Unit 1) and EUBOILER02 (Unit 2) in operation at the Tondu Energy Systems (TES) Filer City Station, located in Filer City, Michigan.

The FPM test was performed to demonstrate qualification as a LEE for FPM. This was the second test performed of the quarterly testing regimen. The FPM LEE demonstration requires quarterly sampling at each unit over a period of three calendar years. The results of each quarterly test must be less than or equal to 50 percent of the applicable FPM standard listed in Table 2 of the MATS Rule (see Table 1.1 below), equating to 0.015 lb/mmBtu for each of Units 1 and 2. A test protocol was submitted to the Michigan Department of Environmental Quality (MDEQ) on September 9th, 2015 and subsequently approved by Mr. Jeremy Howe, MDEQ Environmental Quality Analyst, in his letter dated October 2nd, 2015. The preceding reflects a standing approval for all quarterly MATS PM tests as long as no modifications from the original protocol are required, as was the case for this test event.

EGU Subcategory	Pollutant Being Sampled	Emission Limit
Existing Unit, Coal-fired not low rank virgin coal	Filterable Particulate Matter	0.030 lb/mmBtu

1.1 Summary of Test Program

The test program was conducted in accordance with applicable MATS Rule requirements and followed the sampling, calibration and quality assurance procedures specified in U.S. EPA CFR Part 60, Appendix A, Reference Methods (RM) 1, 2, 3A, 4, 5 (MATS Modified) and 19. In addition, equations contained in MDEQ Air Pollution Control Rules, Part 10, § R336.2011, Reference Test Method 5B were utilized to determine the amount of excess air and present the particulate matter concentration corrected to 50% excess air (Attachment 1).

1.2 Key Personnel

RCTS representatives Brian Miska and Dillon King conducted the testing on March 7 through 9, 2016. Mr. Todd Guenthardt, TES Filer City Maintenance Supervisor and Environmental Health & Safety Coordinator, coordinated the test program with plant personnel. Mr. Jeremy Howe of the MDEQ observed portions of the testing.

Responsible Party	Address	Contact
Test Facility	TES Filer City Station 700 Mee Street Manistee, Michigan 49634	Mr. Todd Guenthardt 231-357-1169 Maintenance Supervisor Environmental Health & Safety todd.guenthardt@cmsenergy.com
Test Representative	Consumers Energy Company RCTS - AETB 2742 North Weadock Highway	Mr. Brian Miska, QSTI Senior Technical Analyst II 989-891-3415 brian.miska@cmsenergy.com
& Qualified Individuals	ESD Trailer #4 Essexville, Michigan 48732	Mr. Dillon King, QSTI Technical Analyst 989-891-5585 dillon.king@cmsenergy.com
Regulatory Agency Representative	Michigan Department of Environmental Quality 120 W. Chapin Street Cadillac, Michigan 49601	Mr. Jeremy Howe Environmental Quality Analyst 231-876-4416 howej1@michigan.gov

Table 1.2 – Key Personnel Contact Information

Please note that reproducing portions of this test report may omit critical substantiating documentation or cause information to be taken out of context. If any portion of this report is reproduced, please exercise due care in this regard.

RECEIVED MAY 0 6 2016 AIR QUALITY DIV.

2.0 SOURCE DESCRIPTION

2.1 **Process Description**

TES Filer City Station operates a cogeneration power plant with a rated output of 60-megawatts (MW) net and 50,000 pounds of process steam per hour. At full load, each of Units 1 and 2 are capable of producing approximately 320,000 pounds per hour of steam, and this steam is fed to a common steam turbine and electrical generator. The electricity and process steam are sold under contract to public and/or private companies.

At the time of testing, Units 1 and 2 were capable of firing mixtures of coal (bituminous and subbituminous), wood and wood waste, construction/demolition (C/D) material, petroleum coke and tire-derived-fuel (TDF) and are classified as "coal-fired unit not low rank virgin coal" in Item 1 of Table 2 Subpart UUUUU. During the tests, bituminous coal and TDF were fired during each run while wood was fired during 1 or more runs.

Units 1 and 2 have recently added the capability to fire natural gas as a clean startup fuel under MATS, as well as at other times for flame stabilization and other purposes, however during this test event, Units 1 and 2 did not have that capability. Further, TES executed an Administrative Consent Order with the EPA which resulted in all petroleum coke having been removed from the site by March 31, 2016. TES does not anticipate firing petroleum coke in the near future. Each unit has a nominal heat input rating of approximately 384 mmBtu.

2.2 Control Device Description

The exhaust gas from each boiler is vented to an individual baghouse for PM control and a spray dryer absorber (SDA) flue gas desulfurization (FGD) system for sulfur dioxide (SO₂) and acid gas control. The abated exhaust gases are discharged through separate circular flues housed within a single exhaust stack; the separate flues discharge approximately 250 feet above grade.

1,13 AND VILLENDE

3.0 SUMMARY OF TEST RESULTS

During the test program, Units 1 and 2 burned a mixture of coal, tire-derived fuel, and wood. The fuel blend firing rate and composite fuel factor data for each of the runs is included in Attachment 4. Testing was conducted at as close to full load as possible. The Unit 1 average steam flow was 307 klbs/hr (96% of full load), while the Unit 2 average steam flow was 296 klbs/hr (92% of full load).

3.1 Objectives

The objective of this test was to demonstrate qualification as a LEE for FPM. This was the second test performed of the three-year duration, quarterly testing regimen. The results of each quarterly test must be less than or equal to 50% the particulate matter emission limit of 0.030 lb/mmBtu to demonstrate qualification for LEE.

3.2 Test Results and Discussion

As shown in Table 3.1 below, the results of each individual run, as well as the average of the three runs for each unit were below the 40 CFR Part 63 Subpart UUUUU limit of 0.030 lb/mmBtu for Units 1 and 2. Both units demonstrated eligibility for Low Emitting EGU qualification as emission rates were below 0.015 lb/mmBtu (i.e., 50% of the FPM limit). This test program was the second of a series of 12 filterable particulate matter tests that will take place over a period of approximately three years to qualify Units 1 and 2 for LEE status.

Source	Run	PM Concentration	PM Fmission	PM Concentration (lb/1,000 lbs Gas Flow [*])	PM Emis	ssion Rate mBtu)
		(gr/dscf)	(lb/hr)	Result	Result	LEE Qualifi- cation
Filterab	le Particu	ılate Matter				
	1	0.0053	3.96	0.009	0.009	_
UNIT 1	2	0.0021	1.65	0.004	0.004	-
	3	0.0069	5.06	0.012	0.012	-
	Average	0.0048	3.56	0.008	0.008	0.015

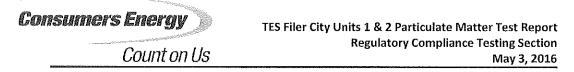
Table 3.1 - TES Filer CitySummary of Filterable PM Emission Test Results

Consumers Energy TES Filer City Units 1 & 2 Particulate Matter Test Report Regulatory Compliance Testing Section May 3, 2016											
Source	Run	PM Concentration	PM Emission Rate	PM Concentration (lb/1,000 lbs Gas Flow [*])	PM Emis (lb/mr						
		(gr/dscf)	(lb/hr)	Result	Result	LEE Qualifi- cation					
	1	0.0038	2.99	0.007	0.007	-					
UNIT 2	2	0.0017	1.37	0.003	0.003	-					
	3	0.0019	1,55	0.003	0.004	-					
	Average	0.0025	1.97	0.004	0.005	0.015					

* Emissions in pounds of particulate per 1000 pounds gas flow corrected to 50 % excess air.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

PM test runs were performed on the Unit 1 Stack March 7 and 8, 2016 and the Unit 2 stack March 8 and 9, 2016. During the testing, each boiler was operating under routine operating conditions as close to full load as possible. Operating data collected at 1-minute intervals during the test runs included CO_2 concentrations, fuel feed rates, steam flow and pressure, stack opacity readings and CEMS derived heat input and composite fuel factor. It should be noted that the run start and stop times for the CEMS data were adjusted by the difference between local time and CEMS time, as well as the response time of the respective CEMS (i.e., 3 minutes for Unit 1 and 4 minutes for Unit 2). In addition, unit specific SDA slurry and recycle flow rates were logged manually; all process data is presented in Attachment 4. Although the test protocol acceptance letter requested that natural gas fuel flow rate be recorded, installation of the natural gas-fired burners was not yet complete at the time of the test and no such data was therefore recorded.


4.1 Sampling Location

The number and location of traverse points for determining exhaust gas velocity/volumetric air-flow and particulate concentrations were determined in accordance with U.S. EPA Reference Method 1, Sample and Velocity Traverses for Stationary Sources. The area of the stack was determined and the cross-section divided into a number of equal areas based on existing air flow disturbances. The test location for Units 1 and 2 is on the stack at an elevation approximately 100 feet above stack grade. Each exhaust gas flue is 76 inches in diameter with two 6-inch internal diameter ports apiece that extend 20 inches from the flue interior wall. At this sample location, USEPA Reference Method 1 required a minimum of 12 traverse points for isokinetic particulate sampling. A schematic depicting the Unit 1 and 2 flues and test port locations is shown in Figures 1-3.

4.2 Velocity and Temperature

The exhaust gas velocity and temperature were determined using U.S. EPA Reference Method 2, *Determination of Stack Gas Temperature and Velocity (Type S Pitot Tube).* The exhaust gas pressure differential (delta P) was measured at each traverse point during PM testing using an "S Type" Pitot tube connected to a manometer. Exhaust gas temperatures were also measured in conjunction with delta P determinations using a "Type K" thermocouple and a temperature indicator.

Attachment 3 of this report includes cyclonic flow test data as verification of the absence of cyclonic flow at the Units 1 and 2 stack test locations. Method 1, § 11.4.2 indicates *if the average* (null angle) *is greater than 20°, the overall flow condition in the stack is unacceptable, and alternative methodology...must be used.* The average null yaw angle measured at the Unit 1 exhaust on August 20, 2012 was observed to be 3° and the average null yaw angle measured at the Unit 2 exhaust on

August 20, 2012 was observed to be 8°, thus meeting the less than 20° requirement. There have been no ductwork and/or stack configuration changes, so the preceding null angle information is considered to be valid and additional cyclonic flow verification was not performed prior to the PM test.

4.3 Molecular Weight

The exhaust gas composition was determined using U.S. EPA Reference Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure). Integrated bag samples were obtained by sampling at each traverse point for purposes of determining flue gas molecular weight. The bag samples were analyzed for oxygen and carbon dioxide using paramagnetic (O_2) and gas filter correlation wheel (CO_2) analyzers. The reference method monitor was calibrated with certified gas standards at three levels and operated following the guidelines of Method 3A.

4.4 Moisture

The exhaust gas moisture content was determined using U.S. EPA Reference Method 4, *Determination of Moisture in Stack Gases* in conjunction with the Method 5 sample apparatus. Exhaust gas was drawn through a series of: one modified Greenburg-Smith (GS) impinger filled with 100 mL of water, one standard GS impinger filled with 100 mL of water, an empty modified Greenburg-Smith (GS) impinger, and one modified GS impinger containing approximately 300 g of silica gel. The impingers were immersed in an ice bath to ensure condensation of exhaust gas moisture and the amount of water vapor collected was determined gravimetrically to calculate exhaust gas percent moisture.

4.5 Filterable Particulate Matter

Filterable PM was collected utilizing 40 CFR Part 60, U.S. EPA Method 5, *Determination of Particulate Matter Emissions from Stationary Sources* with the necessary modifications specified in the MATS Rule for qualifying for low emitting EGU (LEE) status. Specifically, the Method 5 front half temperature was maintained at 320 °F, ± 25 °F, throughout the duration of each test run. A minimum of 2 dry standard cubic meters (dscm) or 70.629 dry standard cubic feet (dscf) of sample volume was drawn through a stainless steel nozzle, a heated stainless steel probe, and a heated glass filter holder containing an 83 millimeter (mm) quartz glass fiber filter followed by a Teflon frit filter support. After each run, filterable PM collected in the nozzle and probe was brushed and rinsed into an appropriately labeled sample bottle using acetone and a Teflon brush. After recovering the quartz FPM filter into a Petri dish labeled "Container #1, Filter", the front half filter holder was recovered with acetone rinses and combined with the probe and nozzle rinse in the sample bottle labeled "Container #2, Probe and Nozzle Rinse". At the laboratory, Method 5 gravimetric analytical

procedures were followed to analyze the filters and rinses. All filters and rinses were weighed multiple times (to ensure a constant weight) in a weighing room maintained at less than 50% relative humidity.

In accordance with §63.10007(e)(2) of the MATS Rule, particulate matter emission rates were calculated in units of lb/mmBtu using the PM concentrations (as lb/dscf) determined in accordance with Method 5, the CO_2 concentrations determined in accordance with Method 3A and composite CO_2 based fuel factors (F_c) determined in accordance with Section 3.3.6 of 40 CFR Part 75, Appendix A, as well as the applicable equations from Method 19. Specific equations include the following:

$$E = C_d F_c \frac{100}{\% CO_{2d}}$$
 Eq. 19-6

The CEMS uses fuel feed rate data and the default F_c factors for bituminous coal, petroleum coke, TDF, and wood residue from 40 CFR Part 75, Appendix F Table 1 to calculate a composite F_c factor on a minute basis via Equation F-8 from Section 3.3.6 of 40 CFR Part 75, Appendix A.

$$F_c = \sum_{i=1}^n X_i (F_c)_i$$
 Eq. 19-6

The default F_c factors for bituminous coal, petroleum coke, TDF, and wood residue can be found below in 40 CFR Part 75, Appendix F Table 1.

Fuel	F-factor (dscf/mmBtu)	F _C -factor (scf CO ₂ / mmBtu)
Coal (as defined by ASTM D388–992):		
Anthracite	10,100	1,970
Bituminous	9,780	1,800
Subbituminous	9,820	1,840
Lignite	9,860	1,910
Petroleum Coke	9,830	1,850
Tire Derived Fuel	10,260	1,800
Oil	9,190	1,420
Gas:		
Natural gas	8,710	1,040
Propane	8,710	1,190
Butane	8,710	1,250
Wood:		
Bark	9,600	1,920
Wood residue	9,240	1,830

TABLE 1-F- AND Fc-FACTORS 1

 $^1 \, \text{Determined}$ at standard conditions: 20 $^{\circ}\text{C}$ (68 $^{\circ}\text{F})$ and 29.92 inches of mercury.

5.0 QUALITY ASSURANCE PROCEDURES

Each U.S. EPA reference method performed contains specific language stating reliable results are obtained by persons equipped with a thorough knowledge of the techniques associated with each method. To that end, factors which could potentially cause sampling errors were minimized by implementing quality assurance (QA) programs into every applicable component of field testing possible. The following QA components were included in this test program.

While not directly required, each PM sample apparatus was leak-checked before each test run as well as immediately after. Extreme care was exercised to minimize effects of stray or ambient particulate at the sampling site, such as ensuring the sample ports are cleaned thoroughly, maintaining enough distance from duct walls and/or other sources of PM so that bias was not introduced artificially. Time, meter box temperature, sample rate, barometric pressure, source temperature and total sample volume was documented for each run. Isokinetic variation was verified to be within Method 5 requirements. Field recovery of the impingers and nozzle/filter particulate catch were carefully performed in an enclosed laboratory area, prior to analysis.

All manual test equipment was calibrated before the test program in accordance with appropriate U.S. EPA procedures. Pitot tubes and thermocouples used to measure the exhaust gas were calibrated following the handbook requirements outlined in Stationary Source-Specific Methods, Method 2, Type S Pitot Tube Inspection, and in ALT – 011, Alternative Method 2 Thermocouple Calibration Procedure Calibration Procedure. Dry test meters used for moisture determination were calibrated using ALT – 009 as described in Method 5, § 16.1, using the procedures in Method 5, § 10.3.2. All applicable equipment calibration documents are included in Attachment 5.

All RM instruments measuring gaseous concentrations were calibrated and operated following applicable methodology based in part on specific quality assurance and quality control requirements contained in Method 7E. Although not required for MATS testing, U.S. EPA Protocol gas standards used by RCTS were purchased from an outside vendor participating in the U.S. EPA Protocol Gas Verification Program (PGVP) calibration gas audit program described 40 CFR Part 75 § 75.21(g). The standards are certified to have a total relative uncertainty of ± 1 percent according to the U.S. EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards; EPA – 600/R-97/121; September, 1997 or EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards; EPA – 600/R-12/531; May, 2012.

Before beginning the sampling, a three-point analyzer calibration error check was conducted on the RM analyzer by injecting zero, mid and high-level calibration gases directly into the instrument and measuring the response. The instrument response must be within $\pm 2.0\%$ of the respective analyzer

Consumers Energy TES Filer City Units 1 & 2 Particulate Matter Test Report **Regulatory Compliance Testing Section** Count on Us May 3, 2016

span or within 0.5 ppmv absolute difference to be acceptable. Due to collecting integrated samples in Tedlar bags, the analyzer calibration error check results were also used as the initial bias check results. After one or more runs, final zero and upscale system bias checks were performed to quantify and compensate for RM drift and bias. The RM system bias is acceptable if those values remain within $\pm 5.0\%$ of the calibration span (or 0.5 ppmv absolute difference). The RM drift is acceptable if the zero and upscale values are within $\pm 3.0\%$ of the calibration span.

6.0 CERTIFICATION

I hereby certify that the statements and information in this test report and supporting enclosures are true, accurate, and complete, and that the test program was performed in accordance with test methods specified in this report.

Brian C. Pape, QSTI Senior Engineering Technical Analyst Lead ESD/Laboratory Services – Regulatory Compliance Testing Section

Report prepared by: Dillon King, QSTI

Engineering Technical Analyst I ESD/Laboratory Services – Regulatory Compliance Testing Section

Report reviewed by:

Jaoon M. Prentue

Jason M. Prentice Senior Engineer II Environmental Services – Air Quality Section

T.E.S. Filer City Unit 1 **Particulate Matter Emission Test**

Summary Table

			Unit 1 Steam Flow			Volumetric Flowrate	Particulate	Concentration (lb/1,000 lbs	Particulate	Emission Rate	Average Stack	Flue Gas Temperature	Flue Gas Velocity	Excess	Flue Gas Moisture	Isokinetic Variation
Date	Source	Run	(klbs/hr)	(DSCFM)	(gr/dscf)	exhaust gas) [*]	(lb/hr)	(lb/mmBtu)	Opacity (%)	(F°)	(fps)	Air (%)	(%)	(%)		
3/7/16	Unit 1	1	306	86,842	0.0053	0.0094	3,96	0.0093	1.40	176.8	65.6	61.44	13,55	99.40		
3/7/16	Unit 1	2	308	92,670	0.0021	0.0037	1.65	0.0036	1.31	178.8	70.8	62.66	14.26	99.40		
3/8/16	Unit 1	3	306	85,030	0.0069	0,0116	5.06	0.0123	1.54	173.2	63.6	50.87	13.21	99.12		
		Average	306.7	88,181	0.0048	0.0082	3,56	0.0084	1.42	176.2	66.7	58.33	13.67	99.31		

* Emissions in pounds of particulate per 1000 pounds gas flow corrected to 50 % excess air.

Notes: 1. The particulate emission rate limit for 40CFR63 Subpart UUUUU Low Emitting EGU status is 0.015 lb/mmBtu. (One half the permissable limit of 0.030 lb/mmBtu)
 2. Oxygen and carbon dioxide is measured via integrated bag sampling at the point of particulate sampling.
 3. Flue gas moisture is determined by USEPA Method 4 in conjunction with USEPA Method 5
 4. Flue gas temperature is the average temperature at the point of particulate sampling.

T.E.S. Filer City Unit 2 Particulate Matter Emission Test

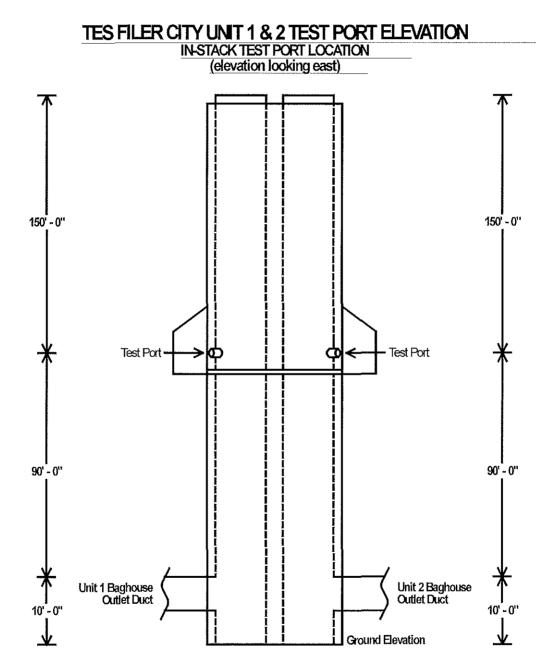
Summary Table

Filterable Particulate Matter		Matter	tter Unit 2 Volumetric Steam Flow Flowrate		Particulate	Particulate Concentration Particulate Emission Rate (lb/1,000 lbs			Average Stack	Flue Gas Temperature	Flue Gas Velocity	Excess	Flue Gas Moisture	Isokinetic Variation
Date	Source	Run	(klbs/hr)	(DSCFM)	(gr/dscf)	exhaust gas) [*]	(lb/hr)	(lb/mmBtu)	Opacity (%)	(F°)	(fps)	Air (%)	(%)	(%)
3/8/16	Unit 2	1	296	92,035	0.0038	0.0069	2.99	0.0070	2.07	180.3	70.4	65.21	14.15	100.63
3/8/16	Unit 2	2	293	91,749	0.0017	0.0030	1,37	0.0031	2.00	180.2	70.6	59,92	14,70	102.33
3/9/16	Unit 2	3	300	97,568	0.0019	0.0034	1.55	0.0035	1.92	177.3	73.9	65.32	13.48	100.00
		Average	296.3	93,784	0.0025	0.0044	1.97	0.0045	2.00	179.2	71.7	63.48	14.11	100.99

⁺ Emissions in pounds of particulate per 1000 pounds gas flow corrected to 50 % excess air.

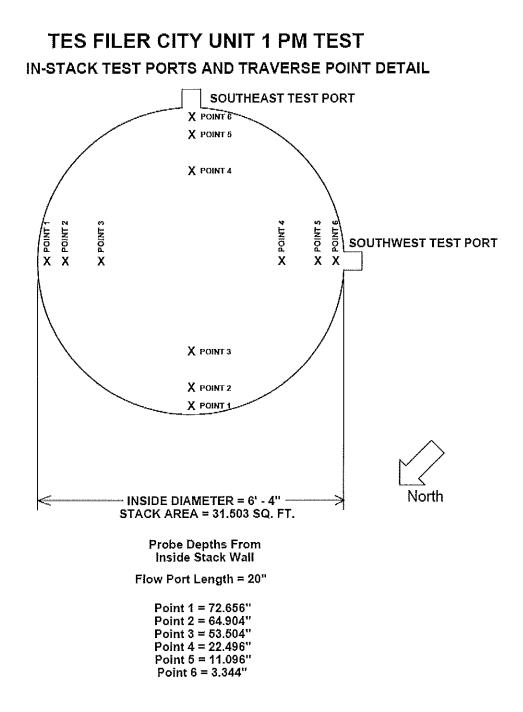
Notes: 1. The particulate emission rate limit for 40CFR63 Subpart UUUUU Low Emitting EGU status is 0.015 lb/mmBtu. (One half the permissable limit of 0.030 lb/mmBtu)

2. Oxygen and carbon dioxide is measured via integrated bag sampling at the point of particulate sampling.

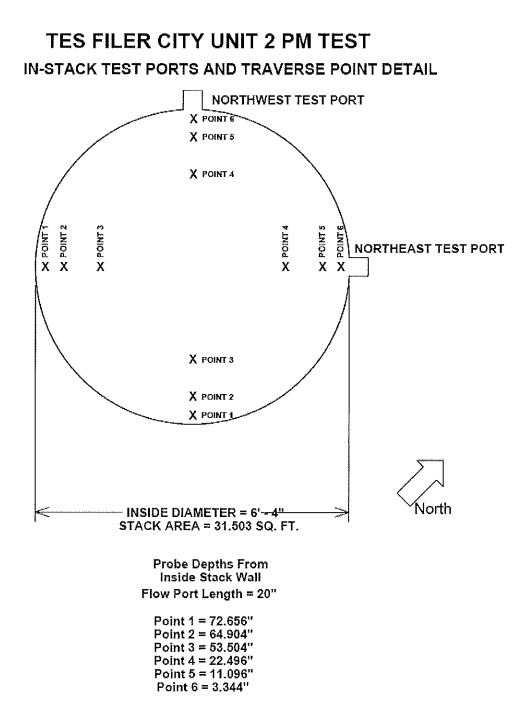

Flue gas moisture is determined by USEPA Method 4 in conjunction with USEPA Method 5

4. Flue gas temperature is the average temperature at the point of particulate sampling.

Consumers Energy

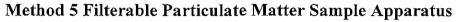

Count on Us

TES Filer City Units 1 & 2 Particulate Matter Test Report Regulatory Compliance Testing Section May 3, 2016


Consumers Energy

Count on Us

Consumers Energy


Count on Us



TES Filer City Unit 1 & 2 Particulate Matter Test Report Regulatory Compliance Testing Section May 3, 2016

FIGURE 4

