Report of...

Compliance Emission Testing

performed for...

Lacks Enterprises, Inc. Barden Street Plant

Kentwood, Michigan

on

Multiple Sources

May 1 and 2, 2019

RECEIVED

JUL 1 1 2019

AIR QUALITY DIVISION

021.31

Network Environmental, Inc. Grand Rapids, MI

I. INTRODUCTION

Network Environmental, Inc. was retained by Lacks Industries to perform compliance emission sampling on the exhausts of two (2) sources located at their Barden Avenue facility in Kentwood, Michigan. The purpose of the study was to document compliance with Michigan Department of Environmental Quality, Air Quality Division, Renewable Operating Permit MI-ROP-N2079-2012 and Source-Wide Permit to Install MI-PTI-N2079-2012.

The following is a list of the sources, applicable emission limits and the compounds tested:

Stack ID	Emission Limits	Compound Sampled
SVK2	Total Cr: 0.0025 Lbs/Hr and 0.012 Mg/M ³	Total Chromium
SVK8	Total Cr: 0.0006 Lbs/Hr and 0.005 Mg/M ³	Total Chromium

The sampling was performed by R. Scott Cargill and Richard D. Eerdmans of Network Environmental, Inc. over the period of May 1 and 2, 2019. Assisting in the study was Ms. Karen Baweja of Lacks Industries and the operating staff of the facility. Mr. David Patterson of the Michigan Department of Environmental Quality, Air Quality Division, was present to observe the testing and source operation.

The following test method was used to conduct the testing:

Total Chrome - U.S. EPA Reference Method 306

II. PRESENTATION OF RESULTS

II.1 TABLE 1 TOTAL CHROME EMISSION RESULTS CHROME PLATE (SVK-8) EXHAUST & CHROME ETCH (SVK-2) EXHAUST BARDEN FACILITY KENTWOOD, MICHIGAN MAY 1 and 2, 2019

Source	Sample	Time	Air Flow Rate DSCFM	Concentration Mg/M ³	Mass Emission Rate
Chrome	1	7:58-10:02	34,748	0.00064	0.000083
Plate	2	10:18-12:22	34,462	0.00065	0.000083
-K 1 (1) - 1 (1) - 1 (1) - 1 (1) - 1 (1) (1) - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (3	12:38-14:42	34,465	0.00063	0.000081
	Average	a	34,558	0.00064	0.000082
上一种的一个			전기 사용되다면 구상적(규칙 기준이는 나이들이 작성	없다는 보이는 그는 기가 없는 것이라고 있었다면 하다고 있다.	사회 병원 기존 교육 기본 경험 대표 교육 교육 교육 기본 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기
Chromo	1	8:01-10:05	53,235	0.0027	0.00053
Chrome -	, w				
WALL TO SHAPE OF THE PARTY OF T	1	8:01-10:05	53,235	0.0027	0.00053

III. DISCUSSION OF RESULTS

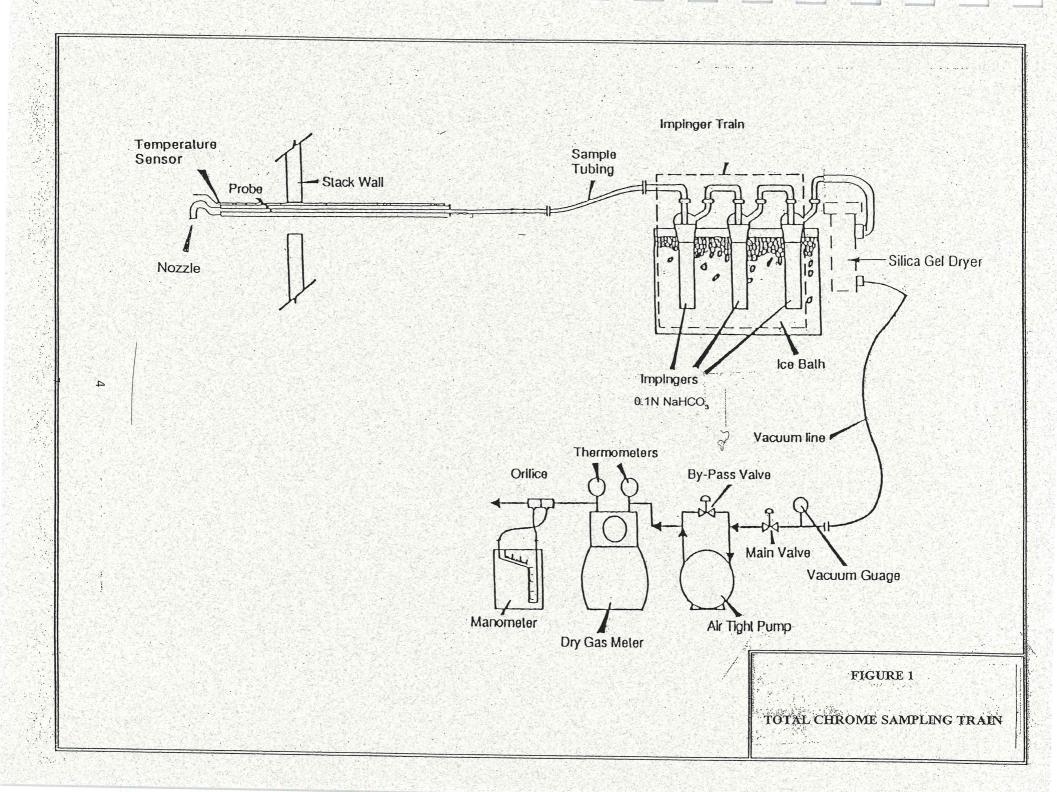
The emission results are presented in Table 1 (Section II.1).

IV. SAMPLING AND ANALYTICAL PROTOCOL

All of the sampling locations met the minimum requirements of U.S. EPA Reference 1. All exhaust stack dimensions and all of the point locations can be seen in Appendix F. Twenty-four points (twelve per port) were used for all of the isokinetic sampling.

IV.1 Total Chrome - The Cr emission sampling was conducted in accordance with U.S. EPA Method 306. Three (3) samples, 120 minutes in duration each, were collected from the exhausts. The samples were collected isokinetically in 0.1N Sodium Bicarbonate as outlined in the method.

The samples were recovered and analyzed for total chromium by inductively coupled argon plasma/mass spectrophotometry (ICP/MS). All the quality assurance and quality control procedures listed in the method were incorporated in the sampling and analysis. Figure 1 is a schematic diagram of the total chrome sampling train.


IV.2 Exhaust Gas Parameters - The exhaust gas parameters (air flow rate, temperature, moisture, and density) were determined by employing U.S. EPA Reference Methods 1 through 4.

All the quality control and quality assurance requirements listed in the methods were incorporated in the sampling and analysis.

This report was prepared by:

R. Scott Cargill Project Manager This report was reviewed by:

Stephan K. Byrd President

Company Name:	Lacks Industries Barden Plant
Company Location:	Kentwood, Michigan
Source Name:	Chrome Plate Exhaust SVK-8
Sampling Staff:	Cargill/Eerdmans
Date:	5/1/19
Number of Samples:	3
Number of Points:	24
Excess Air Calc. (Y?N)	N
Stack Diameter, In. (If Round Stack)	52.0
Stack Dimension, In. (If Rectangular)	х
% Moisture Before Collector:	

SUMMARY OF EXHAUST GAS PARAMETERS

Comp	any Name:	Lacks Industries Barder	n Plant	Date:	05/01/19	
Comp	any Location:	Kentwood, Michigan				
Source Name: Chrome Plate Exhaust SVK-8						
Sampl	ling Staff:	Cargill/Eerdmans				
	Sample Nu	mber		1	2	3
G1.	Stack Diam	eter, inches		52.0	52.0	52.0
G2.	Area of Sta	ck, sq ft.		14.748	14.748	14.748
G3.	Barometric	Pressure, in. Hg		29.08	29.08	29.08
G4.	Static Press	sure in Stack, in. H ₂ O		-0.31	-0.31	-0.31
G5.	Stack Gas 7	Temperature, deg. F		74	76	77
G6.	Average Sq	rt. Velocity Pressure of P	oints Sampled	0.7505	0.7476	0.7485
G7.	Percent Mo	isture At Test Location		1.83	2.06	2.10
G8.	Percent Mo	isture Before Collector		0.0	0.0	0.0
G9.	Dry Gas Co	mposition:	% Oxygen	20.90	20.90	20.90
			% Carbon Dioxide	0.00	0.00	0.00
			% Carbon Monoxide	0.00	0.00	0.00
			% Nitrogen	79.10	79.10	79.10
G10.	Percent Exc	cess Air At Test Location				
Densit	y And Molecu	ular Weight Of Stack Gas:				
G11.	Dry, @ STP	P, lbs./cu. ft.		0.07455	0.07455	0.07455
G12.	Wet, @ STI	P, lbs./cu. ft.		0.07404	0.07397	0.07396
G13.	Wet, @ Sta	ck Conditions, lbs./cu. ft.		0.07113	0.07071	0.07059
G14.	Molecular V	Veight, Dry, @ STP, lbs/r	nole	28.844	28.844	28.844
G15.	Average Ga	s Velocity, feet/min		2,498	2,496	2,501
Stack	Gas Flow Rat	re:				
G16.	Stack Cond	itions, ACFM		36,843	36,809	36,887
G17.	Standard C	onditions, SCFM		35,395	35,186	35,204
G18.	Standard C	onditions, Dry SCFM		34,748	34,462	34,465

SUMMARY OF PARTICULATE TRAIN PARAMETERS

Compa	any Name:	Lacks Industries Barden Plant	Date:	05/01/19	
Comp	any Location:	Kentwood, Michigan			
Source	e Name:	Chrome Plate Exhaust SVK-8			
Sampl	ing Staff:	Cargill/Eerdmans			
	Sample Nui	mber	1	2	3
P1.	·	Points Sampled	24	24	24
P2.		Sample, minutes	120	120	120
P3.		neter, inches	0.25	0.25	0.25
P4.	Nozzle Area		0.000341	0.000341	0.000341
P5.		ation Factor	0.81	0.81	0.81
P6.		ration Factor	0.9903	0.9903	0.9903
P7.		ter Temperature, deg. F			
P8.		eter Temperature, deg. F	88.3	91.2	91.6
P9.		eter Pressure, inches of water	2.539	2.513	2.536
P10.		me, Actual Reading, cu. ft.	105.650	106.131	106.502
P11.		me, @ STP, cu. ft.	98.553	98.479	98.747
P12.		me of Water Condensed, mls.	39	44	45
P13.	•	me of Water Condensed, @ STP, cu.ft.	1.836	2.071	2.118
P14.	-	Sampled, @ STP, cu. ft.	100.389	100.550	100.865
P15.		Gas Sampled, Dry, Ibs.	7.347	7.342	7.362
P16.		Gas Sampled, Wet, Ibs.	7.433	7.438	7.460
P17.	Percent Iso		102.3	103.0	103.3
		version Factors:			
P18.		s Air, After Collector			
P19.		s Air, Before Collector			
P20.		onditions Before Collector	1.012	1.013	1.013
. 20.	Piolotare Co	Strate of Concession	1.012	1.013	1.010

EMISSION SOURCE SUMMARY

Standard Analysis

Company Name:	Lacks Industries Barden	Plant	Date:	05/01/19
Company Location:	Kentwood, Michigan			
Source Name:	Chrome Plate Exhaust S	VK-8		
Sampling Staff:	Cargill/Eerdmans			
Stack Diam	eter, inches			52.0
Area of Sta	ck, sq ft.			14.748
Static Press	ure in Stack, in. H₂O			-0.31
Stack Gas T	emperature, deg. F			76
Percent Moi	sture At Test Location			2.00
Dry Gas Co	mposition:	% Oxygen		20.90
		% Carbon Dioxide		0.00
		% Carbon Monoxide		0.00
		% Nitrogen		79.10
Percent Exc	ess Air At Test Location			
Density, We	et, @ STP, Ibs./cu. ft.			0.07399
Molecular W	/eight, Dry, @ STP, lbs/m	ole		28.844
Average Ga	s Velocity, feet/min			2,498
Stack Gas F	low Rate:	ACFM		36,846
		SCFM		35,262
		SCFM, Dry		34,558

^{1. &}quot;Actual" Means At The Conditions Found At The Sampling Location

^{2. &}quot;Dry" Includes Only The Natural Moisture That Would Be Emitted From The Process. Moisture Added Or Subtracted By The Collector Is Not Included.

^{3. &}quot;Wet" Includes The Moisture As Measured At The Sampling Location.

^{4. &}quot;DSCF" Is Under Totally Dry Conditions, All Moisture Removed.

Company Name:	Lacks Industries Barden Plant
Company Location:	Kentwood, Michigan
· Source Name:	Chrome Etch Exhaust SVK-2
Sampling Staff:	Cargill/Eerdmans
Date:	5/2/19
Number of Samples:	3
Number of Points:	24
Excess Air Calc. (Y?N)	N
Stack Diameter, In. (If Round Stack)	60.0
Stack Dimension, In. (If Rectangular)	х
% Moisture Before Collector:	

.

SUMMARY OF EXHAUST GAS PARAMETERS

Comp	any Name:	Lacks Industries Barde	n Plant	Date:	05/02/19	
Comp	any Location:	: Kentwood, Michigan				
Source Name: Chrome Etch Exhaust SVK-2						
Sampl	ing Staff:	Cargill/Eerdmans				
	Sample Nu	mber		1	2	3
G1.	Stack Diam	neter, inches		60.0	60.0	60.0
G2.	Area of Sta	ick, sq ft.		19.635	19.635	19.635
G3.	Barometric	Pressure, in. Hg		29.31	29.31	29.31
G4.	Static Press	sure in Stack, in. H ₂ O		0.13	0.13	0.13
G5.	Stack Gas	Temperature, deg. F		82	81	81
G6.	Average Sq	ղrt. Velocity Pressure of P	oints Sampled	0.8639	0.8512	0.8568
G7.	Percent Mo	oisture At Test Location		1.51	1.36	1.80
G8.	Percent Mo	oisture Before Collector		0.0	0.0	0.0
G9.	Dry Gas Co	omposition:	% Oxygen	20.90	20.90	20.90
			% Carbon Dioxide	0.00	0.00	0.00
			% Carbon Monoxide	0.00	0.00	0.00
			% Nitrogen	79.10	79.10	79.10
G10.	Percent Exc	cess Air At Test Location				
Densit	ry And Molecu	ular Weight Of Stack Gas	:			
G11.	Dry, @ STF	P, lbs./cu. ft.		0.07455	0.07455	0.07455
G12.	Wet, @ ST	P, lbs./cu. ft.		0.07413	0.07417	0.07405
G13.	Wet, @ Sta	ack Conditions, lbs./cu. ft		0.07079	0.07095	0.07076
G14.	Molecular V	Weight, Dry, @ STP, lbs/r	mole	28.844	28.844	28.844
G15.	Average Ga	as Velocity, feet/min		2,883	2,837	2,859
Stack	Gas Flow Rat	te:				
G16.		litions, ACFM		56,601	55,706	56,145
G17.	Standard C	Conditions, SCFM		54,049	53,285	53,655
G18.		Conditions, Dry SCFM		53,235	52,562	52,691

SUMMARY OF PARTICULATE TRAIN PARAMETERS

Compa	any Name:	Lacks Industries Barden Plant	Date:	05/02/19	
Compa	any Location:	Kentwood, Michigan			
Source Name: Chrome Etch Exhaust SVK-2					
Sampl	ing Staff:	Cargill/Eerdmans			
	Sample Nur	mber	1	2	3
P1.	Number of	Po nts Sampled	24	24	24
P2.	Duration of	Sample, minutes	120	120	120
P3.	Nozzle Dian	neter, inches	0.25	0.25	0.25
P4.	Nozzle Area	a, sq. ft.	0.000341	0.000341	0.000341
P5.	Pitot Calibra	ation Factor	0.81	0.81	0.81
P6.	Meter Calib	ration Factor	0.9903	0.9903	0.9903
P7.	Average Fil	ter Temperature, deg. F			
P8.	Average Me	eter Temperature, deg. F	80.3	83.7	84.0
P9.	Average Me	eter Pressure, inches of water	3.361	3.289	3.326
P10.	Meter Volur	me. Actual Reading, cu. ft.	119.076	118.924	119.320
P11.	Meter Volu	me, @ STP, cu. ft.	113.845	112.957	113.282
P12.	Liquid Volu	me of Water Condensed, mls.	37	33	44
P13.	Vapor Volui	me of Water Condensed, @ STP, cu.ft.	1.742	1.553	2.071
P14.	Total Gas S	ampled, @ STP, cu. ft.	115.587	114.510	115.353
P15.	Weight of G	Gas Sampled, Dry, Ibs.	8.487	8.421	8.446
P16.	Weight of 0	Gas Sampled, Wet, Ibs.	8.568	8.493	8.542
P17.	Percent Iso	kinetics	102.7	103.2	103.2
Conce	ntration Conv	version Factors:			
P18.	50% Exces	s Ar, After Collector			
P19.	50% Exces	s Ar, Before Collector			
P20.	Moisture Co	onditions Before Collector	1.010	1.009	1.011
		1			

Standard Temperature and Pressure (STP) = 29.92 inches Hg, 68 deg. F

EMISSION SOURCE SUMMARY

Standard Analysis

Company Name:	Lacks Industries Barder	n Plant	Date:	05/02/19
Company Location:	Kentwood, Michigan			
Source Name:	Chrome Etch Exhaust S	Chrome Etch Exhaust SVK-2		
Sampling Staff:	Cargill/Eerdmans			
Stack Diam	eter, inches			60.0
Area of Sta	ck, sq ft.			19.635
Static Press	sure in Stack, in. H ₂ O			0.13
Stack Gas 7	「emperature, deg. F			81
Percent Mo	isture At Test Location			1.55
Dry Gas Co	mposition:	% Oxygen		20.90
		% Carbon Dioxide		0.00
		% Carbon Monoxide		0.00
		% Nitrogen		79.10
Percent Exc	cess Air At Test Location			
Density, We	et, @ STP, lbs./cu. ft.			0.07412
Molecular V	Veight, Dry, @ STP, lbs/m	nole		28.844
Average Ga	s Velocity, feet/min			2,860
Stack Gas F	low Rate:	ACFM		56,151
		SCFM	,	53,663
		SCFM, Dry		52,829

^{1. &}quot;Actual" Means At The Conditions Found At The Sampling Location $% \left(1\right) =\left(1\right) \left(1\right)$

^{2. &}quot;Dry" Includes Only The Natural Moisture That Would Be Emitted From The Process. Moisture Added Or Subtracted By The Collector Is Not Included.

^{3. &}quot;Wet" Includes The Moisture As Measured At The Sampling Location.

^{4. &}quot;DSCF" Is Under Totally Dry Conditions, All Moisture Removed.