FINAL REPORT

RECEIVED

JUN 11 2018

AIR QUALITY DIVISION

FCA US LLC

DETROIT, MICHIGAN

JEFFERSON NORTH ASSEMBLY PLANT: OVEN SOLVENT LOADING SOURCE TESTING

RWDI #1802475 June 5, 2018

SUBMITTED TO

Rohit G. Patel Environmental Health & Safety | Air Compliance Manager rohitkumar.patel@fcagroup.com

FCA US LLC 38111 Van Dyke Avenue Sterling Heights, Michigan 48312

Steven Szura Environmental Specialist Steven.Szura@fcagroup.com

FCA US LLC Jefferson North Assembly Plant CIMS 435-07-00 2101 Conner Ave Detroit, Michigan 48215

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.bergeron@rwdi.com

RWDI AIR Inc. Consulting Engineers & Scientists 4510 Rhodes Drive | Unit 530 Windsor, ON N8W 5K5

T: 519.974.7384| ext. 2428 F: 519.823.1316

Jim Belanger Manager jim@jlbindustries.com

JLB Industries, LLC 2181 Avon Industrial Drive Rochester Hills, Michigan 48309

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential, if you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America. JEFFERSON NORTH ASSEMBLY PLANT: OVEN SOLVENT LOADING SOURCE TESTING FCA US LLC RWDI#1802475 June 5, 2018

SA

EXECUTIVE SUMMARY

RWDI AIR Inc. (RWDI) and JLB Industries, LLC (JLB) were retained by FCA US LLC (FCA) Jefferson North Assembly Plant (JNAP) to complete a compliance environmental testing program at the JNAP facility located in Detroit, Michigan. JNAP operates three (3) topcoat paint booths identified as "EU-TOPCOAT1", "EU-TOPCOAT2" and EU-TOPCOAT3". The testing program consisted of Capture Efficiency (CE) testing and Oven Solvent Loading (OSL) testing on one (1) Topcoat Line "EU-TOPCOAT2". Determination of CE and OSL were conducted in accordance with all applicable procedures contained in USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations". The testing was completed on the days of April 10th to April 11th, 2018. The testing consisted of the following:

- Capture efficiency (CE) CE was measured when applying white solids basecoat, metallic (Silver) and standard clearcoat in the "EU-TOPCOAT2" line. This includes the percent of VOC captured from the application of the coating and to the heated flash. The spraybooth and heated flash VOC CE is used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs).
- Oven Solvent Loading (OSL) was completed on the bake oven for the "EU-TOPCOAT2" line. This includes
 the percent of VOC captured from the curing of the coating in the bake ovens. The bake oven VOC CE is
 used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs) and is also
 referred to as oven solvent loading. Oven VOC CE was measured at the "EU-TOPCOAT2" Colorbooth
 when applying white solids basecoat, silver metallic basecoat and standard clearcoat.

Capture Efficiency and Oven Solvent Loading values were derived using the Jeep Grand Cherokee model. Personnel from the paint shop, FCA environmental staff and RWDI/JLB were onsite during the testing. These groups worked together at each stage of testing to ensure that the results were representative of production conditions. In addition, Mr. Bob Byrnes, from the Michigan Department of Environmental Quality (MDEQ), was present to witness the testing on April 10th, 2018 and Mr. Mark Dziadosz, from MDEQ, was present to witness the testing on April 11th, 2018.

RWDI/JLB Industries used highly accurate weighing systems to determine the panel weights before and after coating application.

Material samples were collected from the paint circulation tanks directly after testing. Determination of percent solids by weight and density was performed by Advanced Technologies of Michigan laboratories, located in Livonia, Michigan.

Capture Efficiency (CE) Results Summary (Basecoat)

Parameter	Control Zone	Solid Baseco	at (White)	Metallic Basecoat (Silver)	
		Section Capture Efficiency (%)	Loading (lb/GACS)	Section Capture Efficiency (%)	Loading (ib/GACS)
Basecoat Interior	To Booth Control	4.2%	0.45	0.9%	0.13
Basecoat Interior	To Flash	5,5%	0.59	4.6%	0.64
Basecoat Exterior	To Booth Control	81.4%	8.77	79,9%	11.15
Basecoat Exterior	To Flash	5.3%	0.57	6.1%	0.85
Weighted Booth CE/Loading		41.1%	4.43	37.7%	5.27

Oven Solvent Loading Results Summary (Basecoat)

Parameter	Control Zone	Solid Baseco	at (White)	Metallic Basecoat (Silver)	
		Section Capture Efficiency (%)	Loading (Ib/GACS)	Section Capture Efficiency (%)	Loading (Ib/GACS)
Basecoat Interior	To Oven	6.7%	0.73	13.8%	1.92
Basecoat Exterior To Oven		7.7%	0.83	7.2%	1.00
Weighted Oven CE/Loading		7.1%	0.77	11.1%	1.55

Capture Efficiency (CE) Results Summary (Clearcoat)

		Clearcoat			
Parameter	Control Zone	Section Capture Efficiency (%)	Loading (Ib/GACS)		
Clearcoat Interior	To Booth Control	6.0%	0.59		
Clearcoat Exterior	To Booth Control	66.7%	6,52		
Weighte	d Booth CE/Loading	49.4%	4.83		

Oven Solvent Loading Results Summary (Clearcoat)

		Clearcoat			
Parameter	Control Zone	Section Capture Efficiency (%)	Loading (Ib/GACS)		
Clearcoat Interior	To Oven	24.2%	2.37		
Clearcoat Exterior	To Oven	24.5%	2.40		
Weighte	d Oven CE/Loading	24.4%	2,39		

JEFFERSON NORTH ASSEMBLY PLANT: OVEN SOLVENT LOADING SOURCE TESTING FCA US LLC RWDI#1802475 June 5, 2018

1 INTRODUCTION

RWDI AIR Inc. (RWDI) and JLB Industries, LLC were retained by Fiat Chrysler Automobiles (FCA) US LLC to complete compliance testing of the Topcoat operations at their Jefferson North Assembly Plant (JNAP) located at 2101 Conner Avenue, Detroit, Michigan in accordance with Renewable Operating Permit MI-ROP-N2155-2017. The scope of the test program included the completion of Capture Efficiency (CE) / Oven Solvent Loading (OSL) testing on one (1) of the Topcoat Lines at JNAP (EU-TOPCOAT2). The results from the program are used to update the OSL and CE data as outlined under FG-AUTO-MACT.

The testing was completed on April 10th and April 11th, 2018. The testing consisted of the following:

- Capture efficiency (CE) –CE was measured when applying white solids basecoat, metallic (Silver) and standard clearcoat in the "EU-TOPCOAT2" line. This includes the percent of VOC captured from the application of the coating and to the heated flash. The spraybooth and heated flash VOC CE is used to calculate the mass of VOC captured per gallon of applied coating solids (Ib VOC/gacs).
- Oven Solvent Loading (OSL) was completed on the bake oven for the "EU-TOPCOAT2" line. This includes
 the percent of VOC captured from the curing of the coating in the bake ovens. The bake oven VOC CE is
 used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs) and is also
 referred to as oven solvent loading. Oven VOC CE was measured at the "EU-TOPCOAT2" Colorbooth
 when applying white solids basecoat, silver metallic basecoat and standard clearcoat.

A Source Testing Plan, for the testing, was submitted to the Michigan Department of Environmental Quality (MDEQ) on February 9th, 2018. Testing was successfully completed while all process equipment was operating under normal maximum operating conditions on April 10th and April 11th, 2018. RWDI received confirmation from MDEQ on the approval of the test protocol on March 22nd, 2018. All correspondence with respect to the Source Testing Plan and Approval Letter of the testing event are provided in **Appendix A**.

Testing of emissions was conducted by Mr. Jim Belanger and Mr. Jeff Monache of JLB, Mr. Brad Bergeron and Mr. Matt Lantz of RWDI. Mr. Steven Szura and Mr. Rohit Patel were on-site to monitor the process operation and witness the testing on behalf of FCA US LLC. Testing was witnessed by Mr. Bob Byrnes from MDEQ on April 10th, 2018 and by Mr. Mark Dziadosz from MDEQ on April 11th, 2018.

2.2 Control Equipment

Topcoat Spray Booths are controlled using a downdraft ventilation system and water wash system below the booth grate to control paint overspray. Captured basecoat spray, flash zone and bake oven VOC emission are directed to thermal oxidizer for VOC abatement. All controls were functioning during the testing period.

2.3 **Operating Parameters**

The following process control measures were recorded during the testing:

- Line Speed;
- Coating usage;
- Booth Airflow; and
- Oven Temperature.

Process data for booth airflow and oven temperature is provided in Appendix B.

For line speed, the EU-TOPCOAT2 maximum line speed is 29 jobs per hour. The average jobs per hour during the day shift was 20.2 jobs per hour during the testing.

The coating usage is outlined below in Table 2.3-1

Table 2.3-1: Summary of Coating Usage

Paint Usage	Transfer Efficiency [1]	Uncontrolled Area (cc)	Controlled Area (cc)	% Uncontrolled	% Controlled
Metallic Basecoat (Silver)	70.1%	1305	872	0,599	0.401
Solid Basecoat (White)	75.5%	1486	1027	0.591	0.409
Clearcoat	77.5%	627	1571	0,285	0.715

Note: [1] *Values taken from most recent Transfer Efficiency Testing (May 29, 2015).

2.4 Process Sampling Locations

Four (4) process samples of coatings applied during the testing were collected for analysis. The coatings were collected following procedures in USEPA's "Standard Procedure for Collection of Coating and Ink Samples for Analysis by Method 24 and 24A".

Coating samples were collected at the application point into four (4) ounce glass sampling jars with minimal headspace. The coating-as-applied samples were analyzed using USEPA Method 24 to measure percent VOC, percent water and density. The results are summarized below in **Table 2.4-1** and in **Appendix C**.

Sample	Parameter									
	Date % Non- Volatile	% Non-	%	Density		% Water	VOC		VOC-Water	
		Volatile	g/ml	lb/gal	g/L		lb/gal	g/L	lb/gal	
White Basecoat	4/11/18	61.97	38.03	1.254	10.47	0	477.0	1.29		
Silver Basecoat	4/11/18	50.35	49. 65	1.009	8.42	0	501.0	1.21		
Clearcoat	4/11/18	53.69	46.31	1.028	8.58	0	475.9	3.46		

 Table 2.4-1:
 Summary of Method 24 Coating Analysis

3 SAMPLING AND ANALYTICAL PROCEDURES

3.1 Summary of Test Program

The topcoat process at JNAP is comprised of three (3) topcoat paint lines consisting of the "EU-TOPCOAT1", "EU-TOPCOAT2", and "EU-TOPCOAT3" lines. The testing was completed on "EU-TOPCOAT2" line. The topcoat system consists of several spray sections followed by an associated curing oven. The spray booth operations are defined as follows:

- > Basecoat Robots Basecoat was applied to the exterior and interior surfaces; and
- > Clearcoat Robots Clearcoat was applied to the exterior and interior surfaces.

Skidded vehicles are conveyed through the booth and coated with topcoat materials (basecoat and clearcoat). The vehicles are processed through a bake oven where the coating is cured.

Currently, coatings are applied to the Jeep Grand Cherokee and Dodge Durango production models. For the CE and OSL testing, scrap vehicles were used for the testing program. The test program is summarized below.

3.2 Capture Efficiency Tests

A panel weigh station (PWS) was assembled at the Topcoat Spray Booth. A precision balance with measurement capability to 0.001 gram was placed on an isolation platform inside an enclosure to minimize vibration and air movement.

The testing conformed to the methods described in ASTM 5087-02 for solvent borne coatings.

Test panels were placed on a test vehicle and processed with normal production spray programming.

Four electrocoated panels were used for each test. Each group of test panels was weighed in four locations (see panel test diagram) to determine the relative distribution of VOC that is released in the controlled booth zone and bake oven. The panels were attached to test vehicles by magnet, which allowed for removal of the wet panels with minimal disturbance to the coating during handling. Panel mounting locations were chosen to achieve a representative coating film based on the observation of normal vehicle production.

Before the panels were coated, they were marked (1, 2, 3, 4, blank) and weighed to establish the initial unpainted panel weights (P0). The panels were then attached to a test vehicle and routed through the Spray Booth. After coating, the panels were carefully removed from the test vehicle and brought to the balance for weighing immediately upon exit from the controlled booth zone (P1). Panels were weighed again before entering the controlled bake oven (P2). The panels were then placed on the test vehicle for travel through the curing oven. Upon exiting the oven, the panels were allowed to cool and then weighed a final time (P3).

JEFFERSON NORTH ASSEMBLY PLANT: OVEN SOLVENT LOADING SOURCE TESTING FCA US LLC RWDI#1802475 June 5, 2018

4 TEST EQUIPMENT AND QA/QC PROCEDURES

Equipment used in this program passed the Quality Assurance /Quality Control (QA/QC) procedures. **Appendix D** contains the calibration records of the equipment and inspection sheets.

4.1 Pretest QA/QC Activities and Audits

Before testing, the equipment was inspected and calibrated according to the procedures outlined in the applicable procedures outlined in the USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobiles and Light Duty Truck Topcoat Operations", as referenced in 40 CFR 63, Subpart IIII. Refer to **Appendix D** for inspection and calibration sheets.

The results of select sampling and equipment QA/QC audits are presented in the following sections. Refer to **Appendix D** for inspection and calibration sheets.

4.2 Test Equipment and QA/QC Procedures

4.2.1 Panel Weigh Station

A panel weigh station (PWS) with measurement capability to 0.001 gram was used to measure panel weights. The balance was warmed up and then calibrated with a 300 gram test weight. The balance was tested with 100, 50, 10 and 1 gram weights before commencing weighing operations. A blank panel weight was measured at the beginning of the testing program and again at the time of each subsequent panel weight measurement. The balance was placed on an isolation platform and inside an enclosure to minimize vibration and airflow at the measurement point.

5 RESULTS

The testing program consisted of Capture Efficiency (CE) and Oven Solvent Loading (OSL) testing. Determination of CE and OSL were conducted in accordance with all applicable procedures contained in USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations".

5.1 Modifications

One modification was made to the program methodologies. At the direction of FCA, the CE and OSL testing was completed on a solid basecoat (white) and metallic basecoat (Silver). The original program consisted only of one (1) basecoat (solid, white).

5.2 Results

Results are summarized in Tables 5.2-1a to 5.2-1d for CE and OSL. Detailed VOC CE and OSL results are presented in Table Section. All sampling field notes are provided in **Appendix E**. Sample Calculations are provided in **Appendix F**. All laboratory results are included in **Appendix C**. Process Data is provided in **Appendix A**.

Parameter	Control Zone	Solid Baseco	oat (White)	Metallic Basecoat (Silver)	
		Section Capture Efficiency (%)	Loading (Ib/GACS)	Section Capture Efficiency (%)	Loading (Ib/GACS)
Basecoat Interior	To Booth Control	4.2%	0.45	0.9%	0.13
Basecoat Interior	To Flash	5.5%	0.59	4.6%	0.64
Basecoat Exterior	To Booth Control	81.4%	8.77	79.9%	11.15
Basecoat Exterior	To Flash	5.3%	0.57	6.1%	0.85
Weighted Booth CE/Loading		41.1%	4.43	37.7%	5.27

Table 5.2-1b – Oven Solvent Loading Results Summary (Basecoat)

Parameter	Control Zone	Solid Baseco	at (White)	Metallic Basecoat (Silver)	
		Section Capture Efficiency (%)	Loading (Ib/GACS)	Section Capture Efficiency (%)	Loading (lb/GACS)
Basecoat Interior	To Oven	6.7%	0.73	13.8%	1.92
Basecoat Exterior	To Oven	7.7%	0.83	7,2%	1.00
Weighted Oven CE/Loading		7.1%	0.77	11.1%	1.55

Table 5.2-1c – Capture Efficiency (CE) Results Summary (Clearcoat)

Parameter	Control Zone	Clearcoat			
		Section Capture Efficiency (%)	Loading (lb/GACS)		
Clearcoat Interior	To Booth Control	6.0%	0.59		
Clearcoat Exterior To Booth Control		66.7%	6,52		
Weighte	d Booth CE/Loading	49.4%	4,83		

Table 5.2-1d - Oven Solvent Loading Results Summary (Clearcoat)

Parameter	Control Zono	Clearcoat			
	Control Zone	Section Capture Efficiency (%)	Loading (lb/GACS)		
Clearcoat Interior	To Oven	24.2%	2.37		
Clearcoat Exterior	To Oven	24.5%	2.40		
Weight	ed Oven CE/Loading	24.4%	2.39		

5.3 Discussion of Results

There were no significant disruptions to the testing program.

JEFFERSON NORTH ASSEMBLY PLANT: OVEN SOLVENT LOADING SOURCE TESTING FCA US LLC RWDI#1802475 June 5, 2018

SA

6 PROCESS CONDITIONS

Operating conditions during the sampling were monitored by FCA personnel. All equipment was operated under normal maximum operating conditions. Process Data is provided in **Appendix B**.

Contact was maintained between the operator and the sampling team. A member of the RWDI/JLB sampling team was in contact with FCA staff during the entire sampling program.

7 CONCLUSIONS

Testing was successfully completed on April 10th and April 11th, 2018. All parameters were tested in accordance with referenced methodologies.

Table 1: FCA JNAP Booth and Oven Capture Efficiency SummaryApril 2018

Topcoat 2		Solid B	asecoat	Metallic E	asecoat
Operation	Control Zono	Sector CE (W)	Loading		Loading
operation	Connor Zone	Section CE [76]	(LD/GACS)	Section CE (76)	(LD/GAUS)
BC Interior	to Booth Control	4.2%	0.45	0.9%	0.13
BC Interior	to Flash	5.5%	0.59	4.6%	0.64
BC Exterior	to Booth Control	81.4%	8.77	79.9%	11.15
BC Exterior	to Flash	5.3%	0.57	6.1%	0.85
	Weighted Booth CE/Loading	41.1%	4.43	37.7%	5.27
BC Interior	to Oven	6.7%	0.73	13.8%	1.92
BC Exterior	to Oven	7.7%	0.83	7.2%	1.00
	Weighted Oven CE/Loading	7.1%	0.77	11.1%	1.55
	 de altra da planta de la contra de de la 				
CC Interior	to Booth Control	6.0%	0.59		
CC Exterior	to Booth Control	66.7%	6.52		
	Weighted Booth CE/Loading	49.4%	4.83	**********	
		is of a desails solar			
CC Interior	to Oven	24.2%	2.37		a second and a second
CC Exterior	to Oven	24.5%	2.40	· · · · · · · · · · · · · · · · · · ·	
	Weighted Oven CE/Loading	24.4%	2.39		

Weighted CE/Loading calculated by multiplying section CE by the ratio of paint sprayed in that zone. Example: Solid Basecoat Oven CE = 6.7%.591 + 7.7%*.409 = 7.1%

Ratio of Paint Sprayed in Controlled (Exterior) an Uncontrolled (Interior)								
Non-Ctld Ctld								
Solid Basecoat	0.591	0.409						
Metallic Basecoat	0.599	0.401						
Clearcoat	0.285	0.715						

Table 2: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Exterior Zone Material: White Solid Basecoat

Solvent Loading

					Weight of		
		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
E H A	Blank Panel	Weights -	Weights -	Weights -	Solids	available for	per volume of coating
	Weights	Before Flash	after Flash	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	PO	P1	P2	P5	W _{cos}	Wa	CL
Formula					P5-P0	P1-P2	(W _a /W _{cos})*D _{cos}
1	184.763	186.024	185.968	185.848	1.085	0.056	0.68
2	185.514	186.771	186.725	186.609	1.095	0.046	0.56
3	185.153	186.237	186.212	186.111	0.958	0.025	0.35
4	187.347	188.369	188.353	188.258	0.911	0.016	0.23
Average							0.45

Material Properties

		n y sulikur			n an
in any Children Children			i Bali	in ar charac	EL FEET
foreigne: W.		Ν.			
Formula					
5aki 66. 10.47	0.6197	4,4655	0.83	0.3903	11.75

Capture Efficiency

Table 3: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Flash Material: White Solid Basecoat

Solvent Loading

					Weight of		
		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
	Blank Panel	Weights -	Weights - »	Weights -	Solids	available for	per volume of coating
	Weights	Before Flash	after Flash	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(Ib/GACS)
Variable	PO	P3	P4	P5	W _{cos}	Wa	CL
Formula					P5-P0	P3-P4	$(W_a/W_{cos})^*D_{cos}$
1	184.763	185.958	185.899	185.848	1.085	0.059	0.72
2	185.514	186.716	186.671	186.609	1.095	0.045	0.54
3	185.153	186.203	186.168	186.111	0.958	0.035	0.48
4	187.347	188.351	188.309	188.258	0.911	0.042	0.61
Average							0.59

Material Properties

		s finns i s	A states.			
				e all'anabiations	an Alis Alis October	Speciel Children
i i karafa i i i			i i presente		i i fastera	
	Ê.C.				N _{ige}	
l Baild In.	10,47	₽ALFT _	0.4893	0.47	0.3400	13.15

Captors Efficiency

Table 4: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Oven Material: White Solid Basecoat

Solvent Loading

Sample	Blank Panel Weights (g)	Wet Panel Weights - Before Bake (g)	Panel Weights - after bake (g)	Weight of Coating Solids Deposited (g)	Weight of VOC available for abatement (g)	Weight of VOC available per volume of coating solids (lb/GACS)
Variable	PO	P4	P5	W _{cos}	Wa	CL
Formula				P5-P0	P4-P5	$(W_a/W_{cos})^*D_{cos}$
1	184.763	185.899	185.848	1.085	0.051	0.62
2	185.514	186.671	186.609	1.095	0.062	0.75
3	185.153	186.168	186.111	0.958	0.057	0.79
4	187.347	188.309	188.258	0.911	0.051	0.74
Average		·				0.73

Maiariai Properties

i and i the second second		i A KUMU KANANA KANANA KANANA			
i Atakite i Atakite i	l rstine.		i tek karpeter		- Friedlich (Ernepity
Sale BC 10.47	0.6197	0.4493	4.87	(). Septi	

Capture Efficiency

Table 5: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Exterior Zone Material: White Solid Basecoat

					Meggerer					
		W.C.	Fuel.							
		Fugul		ti Auguli, pris	in kerkerter	- Warger d'Athe		* (155		tere (
	P aunt .	Withhar	a thre	suin.	e striv	the contract for the second		Ştan, Care	FRE LEADER	Capiter
	Verpete	t arthur		lle passage		Mergin with	i i i i i i i i i i i i i i i i i i i		er de la composition	. Curvers
haith feir		enne ern		s kr	linii (E	i - Terran Kanada (k. 1937)	s filte	e i cetter	- Pometstar Zora	t terrest
			Γ.	n en			k K _r		2	E E
				je ja je j	ir li presi	the State			HERE A DEW. ST	
C1	187.999	SP. 4	189.008	1.009	0.113	0.132				
C 2	187.860	186.986	108.472		0.116	<u>0.117</u>				
C)	167.524	188.527	188.433	<u>ų, įkty</u>	<u>() ()</u> \$4	0.103	•			
C 4	188.714	189.617	189.531	4,817	0.085	\$.1¢5				
.A.venupe						4,114	0.620	0.310	0.186	81.4%

Booth Loading Calculation

					Weight of VOC per volume	Weight of VOC available per
		Transfer		VOC	of	volume of
Coating		Efficienc		Content	applied	applied solids
Density	% Solids	у	% VOC	(lb	solids	Booth
(lb/gal)	(% vol)	(%)	(% wt)	VOC/gal)	(lb/gal)	(lb/GACS)
D	S	TE	VOC	VOCg	Cltot	CL
				D*VOC	/OCg/S/TI	CE*Cltot
10.47	48.95%	75.5%	38.03%	3.98	10.774	8.77

FCA JNAP

April 2018

Table 6: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Flash Material: White Solid Basecoat

Solvent Loading

					Weight of		
		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
	Blank Panel	Weights -	Weights -	Weights -	Solids	available for	per volume of coating
	Weights	Before Flash	after Flash	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	PO PO	P2	P3	P4	W _{cos}	Wa	CL
Formula					P4-P0	P2-P3	(Wa/Wcos)*Dcos
C1	187.999	189.128	189.067	189.008	1.009	0.061	0.80
C2	187.880	188.979	188.933	188.872	0.992	0.046	0.61
C3	187.524	188.522	188.497	188.433	0.909	0.025	0.36
C4	188.714	189.610	189.580	189.531	0.817	0.030	0.49
Average							0.57

Material Properties

	- Antropy		n hin burgutu			
	, Kurreren				ik ka na se	Mithen Criminity
		1. 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917		, stration and the second s	i i i i i i i i i i i i i i i i i i i	
biolita kil.	311.47		0.4853	<u>(). (5)</u>	0.34903	

Captars Elliciony

Table 7: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Oven Material: White Solid Basecoat

Solvent Loading

Sample	Blank Panei Weights (g)	Wet Panel Weights - Before Bake (g)	Panel Weights - after bake (g)	Weight of Coating Solids Deposited (g)	Weight of VOC available for abatement (g)	Weight of VOC available per volume of coating solids (lb/GACS)
Variable	P0	P3	P4	W _{cos}	W _n	CL
Formula				P4-P0	P3-P4	(W _n /W _{cos})*D _{cos}
C1	187.999	189.067	189.008	1.009	0.059	0.78
C2	187.880	188.933	188.872	0.992	0.061	0.82
C3	187.524	188.497	188.433	0.909	0.064	0.93
C4	188.714	189.580	189.531	0.817	0.049	0.79
Average						0.83

Material Properties

		i i finistrationale de la compacta d			
				et en	
	a an		in firee in the	i ir de la de l	
	u, u		FR .		
hald HC 10.47		0.4463	0,39	0.3861	13.39

Capture Efficiency

FCA JNAP

Table 8: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Exterior Zone Material: Silver Metallic Basecoat

Solvent Loading

					Weight of		
	and an	Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
	Blank Panel	Weights -	Weights -	Weights -	Solids	available for	per volume of coating
	Weights	Before Elash	after Flash	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	P0	P1	P2	P5	W _{cos}	Wa	CL
Formula					P5-P0	P1-P2	(Wa/Wcos)*Dcos
1	188.721	189.445	189.434	189.322	0.601	0.011	0.18
2	188.309	189.000	188.990	188.795	0.486	0.010	0.20
3	188.362	188.948	188.942	188.827	0.465	0.006	0.13
4	185.440	186.001	186.001	185.873	0.433	0.000	0.00
Average					***		0.13

Material Properties

, alterative states and the second states and the second states and the second states and the second states and	TO REAL	ki kuran	i na su se		
L ikeeren			t literierer		t in Cresty
tenses, something		×,	L.	10 _{- 14}	e a companya da serie
Nemilie BC 1.42	6.949.5	0.4271	0.34	Ú. 4 (45)	外期

Table 9: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Flash Material: Silver Metallic Basecoat

Solvent Loading

					Weight of		
		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
	Blank Panel	Weights -	Weights -	Weights -	Solids	available for	per volume of coating
	Weights	Before Flash	after Flash	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	PO	.P3	P4	P5	Wcos	Wa	CL
Formula					P5-P0	P3-P4	$(W_a/W_{cos})^*D_{cos}$
1	188.721	189.423	189.397	189.322	0.601	0.026	0.43
2	188.309	188.975	188.893	188.795	0.486	0.082	1.67
3	188.362	188.934	188.937	188.827	0.465	-0.003	-0.06
4	185.440	185.987	185.965	185.873	0.433	0.022	0.50
Average							0.64

Material Properties

Exercise of the second	i escienci		i se se no un di d	incluster and
i transitione de la company		e e e e e e e e e e e e e e e e e e e		
E Constanti e Carlo de Carlo d El constante de Carlo				
		i Qelina	0.49469	9.94

Captore Efficiency **Filther** i der sie de la section de KH KH K UKKELL, . . * p I. . ere, enervor 0.4443 1.41 4.663 70.196 0.4371 0.399 0.64 4.6%

FCA JNAP

Table 10: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Oven Material: Silver Metallic Basecoat

Solvent Loading

	Blank Panel	Wet Panel Weights -	Panel Weights -	Weight of Coating Solids	Weight of VOC available for	Weight of VOC available per volume of coating
Sample	(g)	(g)	(g)	(g)	(g)	(Ib/GACS)
Variable	P0	P4	P5	W _{cos}	Wa	CL
Formula				P5-P0	P4-P5	$(W_s/W_{cos})^*D_{cos}$
1	188.721	189.397	189.322	0.601	0.075	1.24
2	188.309	188.893	188.795	0.486	0.098	2.00
3	188.362	188.937	188.827	0.465	0.110	2.35
4	185.440	185.965	185.873	0.433	0.092	2.11
Average						1.92

Material Properties

in a second		i dervo			
and the second second	e en	R FIGELER: R		is the second	
		hii in keen iii		IIII FLAKFOR, III	
	, k.				
		P. J. 1991	r. e.	e. a p.e.r	
Mana ana ana ana ana ana ana ana ana ana	11.37.62.3r	l bihá fil	<u>(1.34</u>	11.46752	V.U.I

Capture Efficiency

Table 11: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Exterior Zone Material: Silver Metallic Basecoat

		ht pr	Rkije	Merican (* 1915) Afrikanski se statistik (* 1916) Afrikanski se statistik (* 1916)						
		P. enst		C. CELER		Weiglust Flut.		. Prigrae		set the
	Eittel		ECE	s: Contraction of the second s		ernenenen ere	h se		h DL Bachten	t ng na ka
				Liegopicat		Weight hilling	. Centraliza	telik in	- nasharan	Erfichter:
souph.	(sr)	Kum krit	l kelj					K.nettog:	- Parel arba Zone	en e
- Aggine	j-j	E.C.		Printig	Ц. 1	P .	FR.	Witner.	F.g.	
l Connuia				jki spis	jet jetj				P. P. W. MW. (CC)	- Felting
C		185.643	185.573	(), 1999	0:069	0.177				
<u>K.</u>	184,749	185.219	185.172	0.463	0,107	0.231				
C.S	163.973	184.499	184,415	0,438	0.013	6,389				
Ç#	184.752	185.229	185.151	0.399	<u>6,073</u>	0.199				
Arenupe						0.198	0.504	Q.497	0:361	79.#¥4

Booth Loading Calculation

					Weight	
					per	Weight of VOC
					volume	available per
		Transfer		VOC	of	volume of
Coating		Efficienc		Content	applied	applied solids
Density	% Solids	У	% VOC	(lb	solids	Booth
(lb/gal)	(% vol)	(%)	(% wt)	VOC/gal)	(lb/gal)	(lb/GACS)
D	S	TE	VOC	VOCg	Cltot	CL
				D*VOC	/OCg/S/TI	CE*Cltot
8.42	42.71%	70.1%	49.65%	4.18	13.963	11.15

FCA JNAP

April 2018

Table 12: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Flash Material: Silver Metallic Basecoat

Solvent Loading

					Weight of		
		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
	Blank Panel	Weights -	Weights -	Weights -	Solids	available for	per volume of coating
	Weights	Before Flash	after Flash	after bake	Deposited	abatement	solida
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(Ib/GACS)
Variable	P0	P2	P3	P4	W _{cos}	Wa	CL
Formula					P4-P0	P2-P3	(W _a /W _{cos})*D _{cos}
C1	185.184	185.639	185.609	185.573	0.389	0.030	0.77
C2	184.709	185.277	185.225	185.172	0.463	0.052	1.11
C3	183.978	184.491	184.455	184.416	0.438	0.036	0.82
C4	184.752	185.223	185.194	185.151	0.399	0.029	0.72
Average							0.85

Material Properties

Kyeneel y	ar _{kel} t.	i kitirny.			
Liper, der -		i Fining here.		etri meni	itististi, tiver, its
				Kruckke	
			19.1	<u> М</u> ,	Ei.an
E PHOLONILLE ISA. 8.4.2	0.3803		4.42	4,4965	<u>91.005</u>

Capitere Efficiency

Table 13: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Oven Material: Silver Metallic Basecoat

Solvent Loading

Sample	Blank Panel Weights (g)	Wet Panel Weights - Before Bake (g)	Panel Weights - after bake (g)	Weight of Coating Solids Deposited (g)	Weight of VOC available for abatement (g)	Weight of VOC available per volume of coating solids (lb/GACS)
Variable	PO	P3	P4	W _{cos}	Wa	CL
Formula				P4-P0	P3-P4	(W _a /W _{cos})*D _{cos}
C1	185.184	185.609	185.573	0.389	0.036	0.92
C2	184.709	185.225	185.172	0.463	0.053	1.14
C3	183.978	184.455	184.416	0.438	0.039	0.88
C4	184.752	185.194	185.151	0.399	0.043	1.07
Average						1.00

Material Properties

	s cusavat	tereciete.			a shekara shekara
in the part of the present of the pr					
	,	E.		14. ₉₄	
				ан на селото на селот	
		1.44 cl.	U. Rući 🕴	0.45403	34.993

Copture Efficiency

Table 14: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Exterior Zone Material: Clearcoat

Solvent Loading

					Weight of		
en de seus en de seus Contractor de seus en de seus		Wet Panel	Panel	Panel	Coating	Weight of VOC	Weight of VOC available
n ole de des program	Blank Panel	Weights =	Weights -	Weights -	Solids	available for	per volume of coating
 All off and all off and all off and all off and all off a	Weights	Before Zone	after Zone	after bake	Deposited	abatement	solids
Sample	(g)	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	PO	P1	P2	P4	W _{cos}	Wa	CL
Formula					P4-P0	P1-P2	$(W_a/W_{cos})^*D_{cos}$
1	185.335	186.304	186.248	186.049	0.714	0.056	0.69
2	185.738	186.658	186.618	186.408	0.670	0.040	0.52
3	184.668	185.682	185.629	185.418	0.750	0.053	0.62
4	185.427	186.525	186.478	186.235	0.808	0.047	0.51
Average							0.59

Material Properties

	f. zetep:	s a suite	e e e e e e e e e e e e e e e e e e e			
			E Clasticra		i ku	ristett. Erentietet
i i kenter i i i i i i i i i i i i i i i i i i i						
e je filser	Ь.,			rni i	th Mary	Ú.,
	8.38	0.5.664	46.534.6	D.W D	4411	4.74

Copture Efficiency

FCA JNAP

Table 15: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Uncontrolled Interior Zone Captured In: Controlled Oven Material: Clearcoat

Solvent Loading

Sample	Blank Panel Weights (g)	Wet Panel Weights - Before Bake (g)	Panel Weights - after bake (g)	Weight of Coating Solids Deposited (g)	Weight of VOC available for abatement (g)	Weight of VOC available per volume of coating solids (lb/GACS)
Variable	P 0	P3	P4	Wcos	Wa	CL
Formula				P4-P0	P3-P4	(W _a /W _{cos})*D _{cos}
C1	185.335	186.230	186.049	0.714	0.181	2.23
C2	185.738	186.601	186.408	0.670	0.193	2.53
C3	184.668	185.616	185.418	0.750	0.198	2.32
C4	185.427	186.456	186.235	0.808	0.221	2.40
Average						2.37

Material Properties

					Nickerster		. Faile Gray at
i Kinpri				KUK -	in the state of the	den stat	
	H.			**.,	19.01	ik	P
<u> </u>							i i prika i pr
<u>Changent</u>	1.36	<u>6.4</u>	69 0.	9.340	(1.58)	0.4031	8.78

JUN 11 2018

RECEIVED

Capture Efficiency

FCA JNAP

April 2018

Table 16: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Exterior Zone Material: Clearcoat

				enogodoonomuunon.				******		
			i i faight	KENER KENE	h (Pi					
	ER BILLA	E.anna	. Witten and the second se	- En Hing		- Assign as bill.		n Cijka		ake pp
	, presidente		i i i friftigi fri	- Mittelle	, Karter	ezanilianje pol	F Culture	e karlene.	stell fractions.	k a paner.
		- Carrenta	Skinkis	Cran Kurl		Ny siy tet me teter	. Kirkelenin	- hi Nam	- nensangan	₽.er₽ixine:Pierce
Sam pir		Zuk kil				Chepheited, etc.		t itali.ng	Pendigter Kane	
	51.			ik na p	. Kpp	₽ [₽]	r i fili se	FE P Planta	- P _{vee}	LE.
e en en estas						al _{and} it _{alor}			P. H. H. W. H.	L.P., m
ĊL	185.010	186.021	185.795	0.735	0.2266	0.2 8 8				
Ć.	185.174	185.394	186.121	0.947	0.279	0.248				
<u>C</u> B	185.812	186.882	186.644	0.832	0.338	0.286				
<u>C</u> 4	185.069	liittijttij	187.084	LØES	0.394	Q.2 4 7				
Avreupe						0.297	0.437	0.463	0.333	66.7%

Booth Loading Calculation

					Weight	
					per	Weight of VOC
		Transfer		VOC	of	available per volume of
Coating		Efficienc		Content	applied	applied solids
Density	% Solids	У	% VOC	(lb	solids	Booth
(lb/gal)	(% vol)	(%)	(% wt)	VOC/gal)	(lb/gal)	(lb/GACS)
D	S	TE	VOC	VOCg	Cltot	CL
				D*VOC	VOCg/S/TI	CE*Cltot
8.58	52.46%	77.5%	46.31%	3.97	9.773	6.52

Table 17: VOC Capture EfficiencyFCA Jefferson North Assembly PlantApril 2018

Sprayed In: Controlled Exterior Zone Captured In: Controlled Oven Material: Clearcoat

Solvent Loading

Sample	Blank Panel Weights	Wet Panel Weights - Before Bake	Pauel Weights - after bake	Weight of Coating Solids Deposited	Weight of VOC available for abatement	Weight of VOC available per volume of coating solids (b(GACS)
Variable	PO	P2	P3	Wcos	Wa	CL
Formula				P3-P0	P2-P3	$(W_a/W_{cos})^*D_{cos}$
C1	185.010	186.011	185.795	0.785	0.216	2.42
C2	185.174	186.383	186.121	0.947	0.262	2.43
C3	185.812	186.868	186.644	0.832	0.224	2.36
C4	186.069	187.358	187.084	1.015	0.274	2.37
Average					·	2.40

Material Properties

Sannya (dersi) Sonda Anande (dernik Constant) (dersi)	
Parater - 9, - 9, - 10,	

Capture Efficiency

Table 18: Pauel Film Build Record

FCA Jefferson North Assembly Plant

April 2018

			E-coat B	uild (mil)	ne source d'a Provinsione		Coated B	uild (mil)	r.		
		Reading	Reading	Reading		Reading	Reading	Reading		Coating Thickness	
Booth	Panel	1.1	2	3	Average	1	2	3	Average	(mil)	
	<u>B1</u>	0.8	0.8	0.8	0.80	1.8	1.6	1.5	1.63	0.83	
	<u>B2</u>	0.8	0.8	0.8	0.80	1.6	1.7	2.1	1.80	1.00	Solid BC
	<u>B3</u>	0.8	0.8	0.8	0.80	1.6	1.7	1.7	1.67	0.87	Interior
	B4	0.9	0.9	0.8	0.87	1.8	1.7	1.4	1.63	0.77	
	B5	0.9	0.9	0.8	0.87	2.0	1.9	1.6	1.83	0.97	
	B6	0.9	0.8	0.8	0.83	1.8	1.9	1.7	1.80	0.97	Solid BC
	<u>B7</u>	0.8	0.8	0.7	0.77	1.6	1.7	1.5	1.60	0.83	Exterior
т	B8	0.7	0.7	0.7	0.70	1.5	1.6	1.4	1.50	0.80	
	M1	0.7	0.7	0.7	0.70	1.4	1.3	1.4	1.37	0.67	Matallia
n	M2	0.7	0.8	0.8	0.77	1.2	1.3	1.2	1.23	0.47	
P C	M3	0.7	0.8	0.7	0.73	1.3	1.3	1.3	1.30	0.57	DU
0	M4	0.8	0.8	0.8	0.80	1.4	1.3	1.1	1.27	0.47	Interior
a	M5	0.8	0.8	0.8	0.80	1.4	1.5	1.4	1.43	0.63	Matallia
t a	M6	0.8	0.8	0.8	0.80	1.7	1.5	1.2	1.47	0.67	
L	M7	0.8	0.8	0.8	0.80	1.5	1.6	1.1	1.40	0.60	DU. Extorior
2	M8	0.8	0.8	0.8	0.80	1.5	1.4	1.2	1.37	0.57	EXTERIO
-	C1	0.8	0.8	0.8	0.80	1.6	1.7	1.7	1.67	0.87	
	C2	0.8	0.8	0.8	0.80	1.6	1.6	1.6	1.60	0.80	Clearcoat
	C3	0.8	0.7	0.8	0.77	1.8	1.7	1.7	1.73	0.97	Interior
	C4	0.8	0.8	0.8	0.80	1.9	1.8	1.6	1.77	0.97	
	C5	0.8	0.8	0.8	0.80	1.9	1.9	1.8	1.87	1.07	
	C6	0.8	0.8	0.8	0.80	2.0	2.1	2.1	2.07	1.27	Clearcoat
	C7	0.8	0.8	0.8	0.80	1.9	2.0	1.9	1.93	1.13	Exterior
	C8	0.8	0.8	0.8	0.80	2.2	2.1	1.9	2.07	1.27	

.