Report of...

Compliance Emission Testing

performed for the...

Grayling Generating Station Grayling, Michigan

on the...

Wood Fired Boiler

October 21-22, 2015

DEC 0 4 2015 AIR QUALITY DIV.

Project #: 106.33

By...

Network Environmental, Inc. Grand Rapids, MI

DEC 0 4 2015

AIR QUALITY DIV.

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Grayling Generating Station	County Crawford
Source Address 4400 W. 4 Mile Rd.	City Grayling
AQD Source ID (SRN) N2388 RO Permit No. MI-ROP-N2388-2014	RO Permit Section No. EUBOLLER, VII,
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the F	RO Permit)
Reporting period (provide inclusive dates): From To To 1. During the entire reporting period, this source was in compliance with ALL terms each term and condition of which is identified and included by this reference. The me is/are the method(s) specified in the RO Permit.	and conditions contained in the RO Permit, ethod(s) used to determine compliance
2. During the entire reporting period this source was in compliance with all terms each term and condition of which is identified and included by this reference, EX enclosed deviation report(s). The method used to determine compliance for each term the RO Permit, unless otherwise indicated and described on the enclosed deviation report.	and conditions contained in the RO Permit, XCEPT for the deviations identified on the erm and condition is the method specified in eport(s).
	s of the KO Featury
Reporting period (provide inclusive dates): From To I. During the entire reporting period, ALL monitoring and associated recordkeeping and no deviations from these requirements or any other terms or conditions occurred	requirements in the RO Permit were met
2. During the entire reporting period, all monitoring and associated recordkeeping re no deviations from these requirements or any other terms or conditions occurred, EX enclosed deviation report(s).	equirements in the RO Permit were met and CEPT for the deviations identified on the
Other Report Certification	in der Geständen gesten einen einen einen der Geständen einen einen einen der Geständen einen eine Geständen eine Geständen der Geständen einen einen Geständen eine Geständen eine Geständen eine Geständen eine Geständen eine G
Reporting period (provide inclusive dates): From $Ocf 21, 2015$ To C Additional monitoring reports or other applicable documents required by the RO Permit EUBOILER, VII, 7 4 V, 1 \rightarrow Syr Less to ensure compliance	are attached as described:

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete, and that any observed, documented or known instances of noncompliance have been reported as deviations, including situations where a different or no monitoring method is specified by the RO Permit.

Philip E. Lewis	Plant Manager	989-348-4575x11
Name of Responsible Official (print or type)	Title	Phone Number
ll -		12/2/15
Signature of Responsible Official		Date

I. INTRODUCTION

Network Environmental, Inc. was retained by the Grayling Generating Station of Grayling, Michigan to conduct a compliance emission study at their facility. The purpose of the study was to meet the emission testing requirements of Renewable Operating Permit (ROP) No. MI-ROP-N2388-2014.

The following is a list of the applicable emission limits for the boiler exhaust:

Emission Limit(s)

Particulate (PM): 0.03 Lbs/MMBTU of Heat Input, 12.0 Lbs/Hr & 25.2 Tons/Year

VOC's: 0.017 Lbs/MMBTU of Heat Input, 8.9 Lbs/Hr & 39.0 Tons/Year

Arsenic (As): 0.02 Lbs/Hr

Cadmium (Cd): 0.012 Lbs/Hr

Total Chromium (Cr): 0.012 Lbs/Hr

Lead (Pb): 0.02 Lbs/Hr & 0.10 Tons/Year

Manganese (Mn): 0.061 Lbs/Hr

Zinc (Zn): 9.5 Lbs/Hr

Benzo-A-Pyrene: 0.005 Lbs/Hr

H2SO4: 0.003 Lbs/MMBTU of Heat Input, 1.5 Lbs/Hr & 6.6 Tons/Year.

The following reference test methods were employed to conduct the emission sampling:

- Particulate Matter U.S. EPA Method 5 (combined with Method 29)
- VOC's U.S. EPA Method 25A
- Metals U.S. EPA Method 29 (combined with Method 5)
- Benzo-A-Pyrene U,S. EPA Method 23
- H₂SO₄ U.S. EPA Method 8
- Exhaust Gas Parameters (air flow rate, temperature, moisture & density) U.S. EPA Methods 1-4

During the sampling the boiler was firing a combination of wood waste and tire derived fuel (TDF).

The sampling was performed over the period of October 21-22, 2015 by Stephan K. Byrd, R. Scott Cargill, Richard D. Eerdmans, and David D. Engelhardt of Network Environmental, Inc... Assisting with the study

RECEIVED DEC 0 4 2015 AIR QUALITY DIV. were Mr. Phil Lewis and the operating staff of the facility. Mr. Jeremy Howe and Ms. Gloria Torello of the Michigan Department of Environmental Quality (MDEQ) - Air Quality Division were present to observe the sampling and source operation.

II. PRESENTATION OF RESULTS

II.1 TABLE 1 PARTICULATE EMISSION RESULTS WOOD FIRED BOILER EXHAUST GRAYLING GENERATING STATION GRAYLING, MI

Sample	Dette	Time	Air Flow Rate	Filterable Particulate Emissions		
	Date		DSCFM ⁽¹⁾	Lbs/Hr ⁽²⁾	Lbs/MMBTU ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	10.00	0.019	
2	10/21/15	17:58-19:08	109,600	10.48	0.020	
3	10/22/15	08:25-09:37	110,240	10.90	0.020	
	Average		108,862	10.46	0.020	

(1) DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)

(2) Lbs/Hr = Pounds Per Hour

(3) Lbs/MMBTU = Pounds Per Million BTU Of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU)

II.2 TABLE 2 TOTAL HYDROCARBON (VOC) EMISSION RESULTS WOOD FIRED BOILER EXHAUST GRAYLING GENERATING STATION GRAYLING, MI

C 1	Date	Time	Air Flow Rate DSCFM ⁽¹⁾	VOC Emissions			
Sample				PPM ⁽²⁾	Lbs/Hr ⁽³⁾	Lbs/MMBTU (4)	
1	10/21/15	12:32-13:32	102,243	0.76	0.53	0.0011	
2	10/21/15	13:47-14:47	105,605	0.88	0.64	0.0012	
3	10/21/15	15:06-16:06	106,746	0.76	0.55	0.0011	
	Average		104,865	0.80	0.57	0.0011	

(1) DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)

(2) PPM = Parts Per Million (v/v) On A Dry Basis As Propane

(3) Lbs/Hr = Pounds Per Hour As Propane

(4) Lbs/MMBTU = Pounds Per Million BTU Of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU)

	II.3	TABLE 3	음을 같은 다. 1971년 - 1971년 - 1971년 - 1971년 - 1971년 - 1971년 1971년 - 1971년 - 1 1971년 - 1971년 - 1971년 - 1971년 - 1971년 - 1971년 1971년 - 1971년 - 1971년 1971년 - 1971년 - 1971년 1971년 - 1971년 - 1 1971년 - 1971년 - 1971년 1971년 - 1971년	
AR	RSENIC (As)	EMISSION	RESULT	S A S
V	VOOD FIRED) BOILER E	XHAUST	
GF	RAYLING GE	NERATING	STATIO	۱.
	GRA	YLING, MI		
	and a second		Marca Matter (1997) and the second	

Sample	Debe	Time	Air Flow Rate	Arsenic (As) Emissions		
	Date		DSCFM ⁽¹⁾	Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	0.0219	0.0088	
2	10/21/15	17:58-19:08	109,600	0.0188	0.0077	
3	10/22/15	08:25-09:37	110,240	0.0289	0.0119	
	Average		108,862	0.0232	0.0095	

DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)
 Mg/M³ = Milligrams Per Dry Standard Cubic Meter

(3) Lbs/Hr = Pounds Per Hour

II.4 TABLE 4 **CADMIUM (Cr) EMISSION RESULTS** WOOD FIRED BOILER EXHAUST **GRAYLING GENERATING STATION** GRAYLING, MI

Sample			Air Flow Rate DSCFM ⁽¹⁾	Cadmium (Cd) Emissions		
	Dale	nime		Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	0.0014	0.00056	
2	10/21/15	17:58-19:08	109,600	0.0014	0.00055	
3	10/22/15	08:25-09:37	110,240	0.0018	0.00075	
	Average		108,862	0.0015	0.00062	

DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)
 Mg/M³ = Milligrams Per Dry Standard Cubic Meter

(3) Lbs/Hr = Pounds Per Hour

II.5 TABLE 5 **TOTAL CHROMIUM (Cr) EMISSION RESULTS** WOOD FIRED BOILER EXHAUST **GRAYLING GENERATING STATION** GRAYLING, MI

Sample	Date	Time	Air Flow Rate	Total Chromium (Cr) Emissions		
			DSCFM (1)	Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	0.0142	0.0057	
2	10/21/15	17:58-19:08	109,600	0.0148	0.0061	
3	10/22/15	08:25-09:37	110,240	0.0205	0.0085	
	Average		108,862	0.0165	0.0067	

(1) DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)

(2) $Mg/M^3 = Milligrams$ Per Dry Standard Cubic Meter

(3) Lbs/Hr = Pounds Per Hour

II.6 TABLE 6 MANGANESE (Mn) EMISSION RESULTS WOOD FIRED BOILER EXHAUST GRAYLING GENERATING STATION GRAYLING, MI							
Comple	Date	Time	Air Flow Rate DSCFM ⁽¹⁾	Manganese (Mn) Emissions			
Sample				Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾		
1	10/21/15	16:03-17:22	106,746	0.0765	0.0306		
2	10/21/15	17:58-19:08	109,600	0.1195	0.0490		
3	10/22/15	08:25-09:37	110,240	0.0939	0.0388		
	Average		108,862	0.0966	0.0395		

DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)
 Mg/M³ = Milligrams Per Dry Standard Cubic Meter

- (3) Lbs/Hr = Pounds Per Hour

II.7 TABLE 7 LEAD (Pb) EMISSION RESULTS WOOD FIRED BOILER EXHAUST **GRAYLING GENERATING STATION GRAYLING, MI**

Sample	Date	Time	Air Flow Rate	Lead (Pb) Emissions		
			DSCFM ⁽¹⁾	Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	0.0260	0.0104	
2	10/21/15	17:58-19:08	109,600	0.0230	0.0094	
3	10/22/15	08:25-09:37	110,240	0.0292	0.0120	
	Average		108,862	0.0260	0.0106	
	-M = Dry Stand	ard Cubic Feet Pe	r Minute (STP = 68 ºF :	and 29 92 in Ha)		

- (2) Mg/M³ = Milligrams Per Dry Standard Cubic Meter
 (3) Lbs/Hr = Pounds Per Hour

II.8 TABLE 8 ZINC (Zn) EMISSION RESULTS WOOD FIRED BOILER EXHAUST GRAYLING GENERATING STATION GRAYLING, MI						
Caraala	Data	Time	Air Flow Rate DSCFM ⁽¹⁾	Zinc (Zn) Emissions		
Sample	Date	Time		Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/21/15	16:03-17:22	106,746	2.87	1.15	
2	10/21/15	17:58-19:08	109,600	3.30	1.36	
3	10/22/15	08:25-09:37	110,240	2.98	1.23	
	Average		108,862	3.05	1.25	

DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)
 Mg/M³ = Milligrams Per Dry Standard Cubic Meter
 Lbs/Hr = Pounds Per Hour

			[.9 T	ABLE	9		
BE	ENZO-	A-PYR	ENE	EMIS	SION	RES	ULTS
	WOO	D FIR	ED B	OILE	R EXI	IAUS	T
4	GRAY	LING (GENE	RATI	NG S	TATI	ON
		GF	ZAYL	ING,	MI		
27						en en la composition La composition	1.1

Sample	Date	Time	Air Flow Rate DSCFM ⁽¹⁾	Benzo-A-Pyrene Emissions		
				ug/M ^{3 (2)}	Lbs/Hr ⁽³⁾	
1	10/22/15	10:53-12:09	106,336	4.50E-03	1.79E-06	
2	10/22/15	13:04-14:17	111,446	4.45E-03	1.86E-06	
3	10/22/15	15:05-16:16	110,469	4.26E-03	1.76E-06	
	Average		109,417	4.40E-03	1.80E-06	
- 841 N (181 N N N N	이 지않는 것 같아요. 그 도망했다.	とうしき 読ん ちょうそう ちたしょう	(i) A graduation of the second sec		and the second	

(1) DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg) (2) ug/M^3 = Micrograms Per Dry Standard Cubic Meter (STP = 68 °F and 29.92 in. Hg)

(3) Lbs/Hr = Pounds Per Hour

II.10 TABLE 10 SULFURIC ACID (H2SO4) EMISSION RESULTS WOOD FIRED BOILER EXHAUST GRAYLING GENERATING STATION GRAYLING, MI								
Sample	Date	Time	Air Flow Rate DSCFM ⁽¹⁾	Sulfuric Acid (H ₂ SO ₄) Emissions				
				Mg/M ^{3 (2)}	Lbs/Hr ⁽³⁾	Lbs/MMBTU (4)		
1	10/21/15	10:05-11:20	104,320	0.33	0.13	0.00026		
2	10/21/15	11:52-13:04	102,243	0.31	0.12	0.00025		
3	10/21/15	13:38-14:52	105,605	0.42	0.17	0.00032		
	Averag	e	104,056	0.36	0.14	0.00027		

(1) DSCFM = Dry Standard Cubic Feet Per Minute (STP = 68 °F and 29.92 in. Hg)

(2) Mg/M³ = Milligrams Per Dry Standard Cubic Meter (STP = 68 °F and 29.92 in. Hg)

(3) Lbs/Hr = Pounds Per Hour

(4) Lbs/MMBTU = Pounds Per Million BTU Of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU.

7

III. DISCUSSION OF RESULTS

The results of the emission sampling are summarized in Tables 1 through 10 (Sections II.1 through II.10). The results are presented as follows:

III.1 Particulate Emission Results (Table 1)

Table 1 summarizes the particulate emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Particulate Mass Emission Rates:
 - Lbs/Hr Pounds of Particulate Per Hour
 - Lbs/MMBTU Pounds of Particulate Per Million BTU of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU)

III.2 VOC Emission Results (Table 2)

Table 2 summarizes the total hydrocarbon (VOC) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (SCFM) Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- VOC Concentrations (PPM) Parts Per Million (v/v) On A Dry Basis As Propane
- VOC Mass Emission Rates:
 - ♦ Lbs/Hr Pounds of VOC Per Hour As Propane
 - Lbs/MMBTU Pounds of VOC Per Million BTU of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU)

III.3 Arsenic (As) Emission Results (Table 3)

Table 3 summarizes the arsenic (As) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Arsenic (As) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter

• Arsenic (As) Mass Emission Rates (Lbs/Hr) - Pounds of Arsenic Per Hour

III.4 Cadmium (Cd) Emission Results (Table 4)

Table 4 summarizes the cadmium (Cd) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Cadmium (Cd) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Cadmium (Cd) Mass Emission Rates (Lbs/Hr) Pounds of Cadmium Per Hour

III.5 Total Chromium (Cr) Emission Results (Table 5)

Table 5 summarizes the total chromium (Cr) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in, Hg)
- Total Chromium (Cr) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Total Chromium (Cr) Mass Emission Rates (Lbs/Hr) Pounds of Total Chromium Per Hour

III.6 Manganese (Mn) Emission Results (Table 6)

Table 6 summarizes the manganese (Mn) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Manganese (Mn) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Manganese (Mn) Mass Emission Rates (Lbs/Hr) Pounds of Manganese Per Hour

III.7 Lead (Pb) Emission Results (Table 7)

Table 7 summarizes the lead (Pb) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)

- Lead (Pb) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Lead (Pb) Mass Emission Rates (Lbs/Hr) Pounds of Lead Per Hour

III.8 Zinc (Zn) Emission Results (Table 8)

Table 8 summarizes the Zinc (Zn) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Zinc (Zn) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Zinc (Zn) Mass Emission Rates (Lbs/Hr) Pounds of Zinc Per Hour

III.9 Benzo-A-Pyrene Emission Results (Table 9)

Table 9 summarizes the benzo-a-pyrene emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Benzo-A-Pyrene Concentration (ug/M³) Micrograms Per Dry Standard Cubic Meter
- Benzo-A-Pyrene Mass Emission Rate (Lbs/Hr) Pounds of Benzo-A-Pyrene Per Hour

III.10 Sulfuric Acid (H₂SO₄) Emission Results (Table 10)

Table 10 summarizes the sulfuric acid (H₂SO₄) emission results as follows:

- Sample
- Date
- Time
- Air Flow Rate (DSCFM) Dry Standard Cubic Feet Per Minute (STP = 68 °F & 29.92 in. Hg)
- Sulfuric Acid (H₂SO₄) Concentrations (Mg/M³) Milligrams Per Dry Standard Cubic Meter
- Sulfuric Acid (H₂SO₄) Mass Emission Rates;
 - ♦ Lbs/Hr Pounds of Sulfuric Acid Per Hour
 - Lbs/MMBTU Pounds of Sulfuric Acid Per Million BTU of Heat Input (Calculated Using Equation 19-6 From U.S. EPA Method 19 With An F-Factor of 1,830 DSCF/MMBTU)

IV. SAMPLING AND ANALYTICAL PROTOCOL

The sampling location for the boiler exhaust was on the 92 inch diameter exhaust at a location that meets the 8 duct diameter downstream and 2 duct diameter upstream requirement of U.S. EPA Method 1. There are 4 sample ports. Twelve (12) sampling points (3 per port) were used for the isokinetic sampling. The sampling point dimensions were as follows:

Sample Point	Dimension (Inches)
	4.04
2	13.43
3	27.23

IV.1 Particulate & Metals – The particulate and metals sampling was conducted by employing U.S. EPA Method 29 (combined with Method 5). This is an out of stack filtration method, where the sampling probe and filter are heated at 250 °F (plus or minus 25 °F).

Three (3) samples were collected from the boiler exhaust stack. Each sample was sixty (60) minutes in duration. Each sample had a minimum sample volume of thirty (30) dry standard cubic feet. The samples were collected isokinetically on quartz filters and in a nitric acid/hydrogen peroxide solution.

The filters and nozzle/probe rinses (front half) were analyzed gravimetrically for particulates in accordance with U.S. EPA Method 5. The nozzle/probe rinses, filters and nitric acid/hydrogen peroxide solutions were analyzed for all the above listed metals by inductively coupled argon plasma/mass spectrophotometry (ICAP/MS) analysis in accordance with Method 29. All the quality assurance and quality control procedures listed in the method were incorporated in the sampling and analysis. Figure 1 is a diagram of the sampling train.

IV.2 VOC – The total hydrocarbon (VOC) emission sampling was conducted in accordance with U.S. EPA Reference Method 25A. A J.U.M. Model 3-500 flame ionization detector (FID) analyzer was used to monitor the boiler exhaust. Sample gas was extracted through a heated probe. A heated teflon sample line was used to transport the exhaust gases to the analyzer. The analyzer produces instantaneous readouts of the VOC concentrations (PPM).

The analyzer was calibrated by system injection (from the back of the stack probe to the analyzer) prior to the testing. A span gas of 96.49 PPM was used to establish the initial instrument calibration. Calibration gases of 29.17 PPM and 50.19 PPM were used to determine the calibration error of the analyzer. After each sample, a system zero and system injection of 29.17 PPM were performed to establish system drift and system blas during the test period. All calibration gases used were EPA Protocol Propane Calibration Gases. Three (3) samples were collected from the boiler exhaust. Each sample was sixty (60) minutes in duration.

The analyzer was calibrated to the output of the data acquisition system (DAS) used to collect the data from the boiler exhaust. All reference method data was corrected using Equation 7E-5 from U.S. EPA Method 7E. Figure 2 is a diagram of the Method 25A VOC sampling train.

IV.3 Benzo-A-Pyrene – The benzo-a-pyrene emission sampling was performed in accordance with U.S. EPA Method 23. A Modified Method 5 (MM5) sampling train, as described in Method 23, was used to collect the samples. The sampling train consisted of a heated glass lined probe followed by a heated pre-cleaned quartz filter. A condenser coil followed by an XAD sorbent trap followed the heated filter. An impinger train containing HPLC water followed the XAD trap. All sampling train components were pre-cleaned in accordance with the method.

Three (3) samples were collected. Each sample was sixty (60) minutes in duration, and had a minimum sample volume of thirty (30) dry standard cubic feet. The sampling system operation was consistent with U.S. EPA Method 5. The three samples and the blank train were recovered in pre-cleaned sample bottles with Teflon lined caps. The probe rinse and filter rinse were combined with the XAD extract for analysis. The back-half impinger condensate was also analyzed. The analytes were extracted from the sample, separated by high resolution gas chromatography, and measured by high resolution mass spectrometry. The analysis followed the procedures of SW-846 Method 8290. All the quality assurance and quality control procedures listed in the methods were incorporated in the sampling and analysis. Figure 3 is a diagram of the Method 23 sampling train.

IV.4 Sulfuric Acid – The sulfuric acid determinations were conducted in accordance with U.S. EPA Method 8. The exhaust gas was extracted through a heated probe which lead to an impinger train. The first impinger contained 80% isopropyl alcohol (IPA), which is where the sulfuric acid was collected. The samples were collected isokinetically as described in the method. Immediately following each sample, a twenty (20) minute purge (at approximately the average sampling rate) using ambient air was performed on the impinger train. The purge is designed to remove any SO₂ that might remain in the first impinger. The sulfuric acid content in the samples was determined by the barium thorin titration technique described in the method. Three (3) samples, were collected. Each sample was sixty (60) minutes in duration and had a minimum sample volume of thirty (30) dry standard cubic feet. All the quality assurance and quality control requirements of the method will be incorporated in the sampling and analysis. The sulfuric acid sampling train is shown in Figure 4.

IV.5 Exhaust Gas Parameters – The exhaust gas parameters (air flow rate, temperature, moisture and density) were determined in conjunction with the other sampling by employing U.S. EPA Methods 1 through 4. Air flow rates, temperatures, moistures and densities were determined using the isokinetic sampling trains. All the quality assurance and quality control procedures listed in the methods were incorporated in the sampling and analysis.

This report was prepared by:

David D. Engelhardt Vice President

This report was reviewed by:

Stephan K. Byrd President

·圣马马·金属的"金马马克"的第三人称单数

an dha shi ka na kana kata na dhi na shi na shekara ka