

# CONTINUOUS EMISSIONS MONITORING SYSTEM RELATIVE ACCURACY DETERMINATION

Performed For **Teledyne Monitor Labs** 

Performed At
Resolute Forest Products
Utility Boiler 1 (EUBOILER)
Menominee, Michigan

*Test Date* **May 11, 2022** 

Report No.

**TRC Environmental Corporation Report 487931** 

Report Submittal Date
June 13, 2022

TRC Environmental Corporation 7521 Brush Hill Road Burr Ridge, Illinois 60527 USA

T (312) 533-2042 F (312) 533-2070



### **Report Certification**

I certify that to the best of my knowledge:

- Testing data and all corresponding information have been checked for accuracy and completeness.
- o Sampling and analysis have been conducted in accordance with the approved protocol and applicable reference methods (as applicable).
- All deviations, method modifications, or sampling and analytical anomalies are summarized in the appropriate report narrative(s).

| David A. Wells                |
|-------------------------------|
| Dave Wells<br>Project manager |
| June 13, 2022                 |

TRC was operating in conformance with the requirements of ASTM D7036-04 during this test program.

Bruce Randall

TRC Emission Testing Technical Director



## **TABLE OF CONTENTS**

| 1                                      | ITRODUCTION                                                                                                                                                                                                                                                                                                                                                                     | 4                                      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.0 SL                                 | JMMARY OF RESULTS                                                                                                                                                                                                                                                                                                                                                               | 5                                      |
| 3.0 DI                                 | ISCUSSION OF RESULTS                                                                                                                                                                                                                                                                                                                                                            | 5                                      |
| 4                                      | ST PROCEDURES                                                                                                                                                                                                                                                                                                                                                                   | 6<br>6                                 |
| 5.0 Q                                  | UALITY ASSURANCE PROCEDURES                                                                                                                                                                                                                                                                                                                                                     | 7                                      |
| 6.0 TE                                 | EST RESULTS SUMMARIES                                                                                                                                                                                                                                                                                                                                                           | 8                                      |
| ()<br>()<br>()<br>()<br>()<br>()<br>() | NDIX AETB and QI Information Summary Qualified Individual Certificate(s) Continuous Emissions Monitoring System (CEMS) and Plant Operating Data Sample Location Information Sampling Train Diagram Calculation Nomenclature and Formulas Processed Field Data Sheets NO2-to-NO Conversion Data Response Time Data Analyzer Interference Data Calibration Gas Certification Data | 14<br>15<br>26<br>27<br>30<br>54<br>56 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                        |



## CONTINUOUS EMISSIONS MONITORING SYSTEM RELATIVE ACCURACY DETERMINATION

#### 1.0 INTRODUCTION

TRC Environmental Corporation (TRC) performed a continuous emissions monitoring system (CEMS) relative accuracy test on May 11, 2022, at the Resolute Forest Products Utility Boiler in Menominee, Michigan. The tests were authorized by and performed for Teledyne Monitor Labs.

The purpose of this test program was to evaluate the relative accuracy (RA) of the nitrogen oxides ( $NO_x$ ), and oxygen ( $O_2$ ) CEMS on Utility Boiler 1 (EUBOILER) during normal operating conditions. The test program was conducted according to the TRC site-specific test plan.

### 1.1 Project Contact Information

| Participants                            |                                                                                     |                                                                                                                       |
|-----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Test Facility                           | Resolute Forest Products<br>701 Fourth Avenue<br>Menominee, Michigan 49858          | Mr. David Spitzer Midwest Regional Service Manager 859-322-8032 (phone) David.spitzer@teledyne.com                    |
| Test Coordinator                        | Teledyne Monitor Labs<br>7493 Crestwood Ct<br>Florence, KY 41042                    |                                                                                                                       |
| Air Emissions<br>Testing Body<br>(AETB) | TRC Environmental Corporation<br>7521 Brush Hill Road<br>Burr Ridge, Illinois 60527 | Mr. David A. Wells<br>Senior Project Manager<br>312-533-2037 (phone)<br>312-533-2070 (fax)<br>dwells@trccompanies.com |

The tests were conducted by David Wells and Ted Kalisz of TRC. Documentation of the on-site ASTM D7036-04 Qualified Individual (QI) can be located in the appendix to this report.

Nobody from the Michigan Department of Environmental, Great Lakes, and Energy (EGLE) of Air Quality Division observed the testing.



#### 1.2 Process Description

Resolute Forest Products operates a 162 MMBtu/hr natural gas fired boiler using low  $NO_x$  burners and flue gas recirculation at its facility in Menominee, Michigan. The boiler provides steam for building heating and process use within the plant. Flue gases generated in the boiler, exhaust through a duct breaching and then a stack to atmosphere.

#### 2.0 SUMMARY OF RESULTS

The relative accuracies of the CEMS are as follows:

|       |                 |          | Perfort              | mance Specifications (40CFR60) | CEMS<br>Performance  |
|-------|-----------------|----------|----------------------|--------------------------------|----------------------|
| Load  | Parameter       | Units    | Specification<br>No. | Acceptance Criteria            | Relative<br>Accuracy |
| > 50% | NO <sub>X</sub> | ppmvd    | 2                    | RA ≤ 20%                       | 6.40 %               |
| > 50% | NO <sub>X</sub> | lb/MMBtu | 2 .                  | RA ≤ 20%                       | 6.05 %               |
| > 50% | O <sub>2</sub>  | %        | 3                    | RA ≤ 1.0% difference           | 0.00 %               |

#### 3.0 DISCUSSION OF RESULTS

The complete test results from this program are tabulated in Section 6.0.

The data acquisition and handling system (DAHS) computer printout for the same time periods as the RM testing was used to determine the relative accuracy. The watches of the test crew were synchronized with the CEMS prior to testing.

No problems were encountered with the testing equipment during the course of the test program. Source operation appeared normal during the entire test program and operated at more than 50 percent of normal load. The CEMS operation appeared normal with no apparent problems during sampling. No changes or problems were encountered that required modification of any procedures presented in the test plan. No adverse test or environmental conditions were encountered during the conduct of this test program. Operating data was recorded by plant personnel and is appended to this report.



#### **4.0 TEST PROCEDURES**

All testing, sampling, analytical, and calibration procedures used for this test program were performed in accordance with the methods presented in the following sections. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, USEPA 600/R-94/038c, September 1994 was used to supplement procedures.

## 4.1 Determination of the Concentration of Gaseous Pollutants Using a Multi-Pollutant Sampling System

Concentrations of the pollutants in the following sub-sections were determined using one sampling system. The number of points at which sample was collected was determined in accordance with Method 40CFR60 specifications.

A straight-extractive sampling system was used. A data logger continuously recorded pollutant concentrations and generated one-minute averages of those concentrations. All calibrations and system checks were conducted using USEPA Protocol gases. Three-point linearity checks were performed prior to sampling, and in the event of a failing system bias or drift test (and subsequent corrective action). System bias and drift checks were performed using the low-level gas and either the mid- or high-level gas prior to and following each test run.

Analyzer interference tests were conducted in accordance with the regulations in effect at the time that TRC placed an analyzer model in service.

#### 4.1.1 O<sub>2</sub> Determination by USEPA Method 3A

This method is applicable for the determination of  $O_2$  concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The  $O_2$  analyzer was equipped with a paramagnetic-based detector.

#### 4.1.2 NO<sub>x</sub> Determination by USEPA Method 7E

This method is applicable for the determination of  $NO_x$  concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The  $NO_x$  analyzer utilized a photomultiplier tube to measure the linear and proportional luminescence caused by the reaction of nitric oxide and ozone.

#### 4.2 Determination of F-Factors by USEPA Method 19

This method is applicable for the determination of the pollutant emission rate using oxygen  $(O_2)$  or carbon dioxide  $(CO_2)$  concentrations and the appropriate F factor (the ratio of combustion gas volumes to heat inputs) and the pollutant concentration. The appropriate F-Factor was selected from Table 19-2 of Method 19.



#### **5.0 QUALITY ASSURANCE PROCEDURES**

TRC integrates our Quality Management System (QMS) into every aspect of our testing service. We follow the procedures specified in current published versions of the test Method(s) referenced in this report. Any modifications or deviations are specifically identified in the body of the report. We routinely participate in independent, third party audits of our activities, and maintain:

- Accreditation from the Louisiana Environmental Laboratory Accreditation Program (LELAP);
- Accreditation from the Stack Testing Accreditation Council (STAC) and the American Association for Laboratory Accreditation (A2LA) that our operations conform with the requirements of ASTM D 7036 as an Air Emission Testing Body (AETB).

These accreditations demonstrate that our systems for training, equipment maintenance and calibration, document control and project management will fully ensure that project objectives are achieved in a timely and efficient manner with a strict commitment to quality.

All calibrations are performed in accordance with the test Method(s) identified in this report. If a Method allows for more than one calibration approach, or if approved alternatives are available, the calibration documentation in the appendices specifies which approach was used. All measurement devices are calibrated or verified at set intervals against standards traceable to the National Institute of Standards and Technology (NIST). NIST traceability information is available upon request.

ASTM D7036-04 specifies that: "AETBs shall have and shall apply procedures for estimating the uncertainty of measurement. Conformance with this section may be demonstrated by the use of approved test protocols for all tests. When such protocols are used, reference shall be made to published literature, when available, where estimates of uncertainty for test methods may be found." TRC conforms with this section by using approved test protocols for all tests.

RECEIVED
AUG 15 2022
AIR QUALITY DIVISION



## **6.0 TEST RESULTS SUMMARIES**



RATA Type: Regulation: RM Used:

Nitrogen Oxides (NO<sub>x</sub>), ppm 40CFR60

| Custome  | r:   | Resolute Forre | st Product | s     | Project #:      | 487931          |            |           |
|----------|------|----------------|------------|-------|-----------------|-----------------|------------|-----------|
| Unit ID: |      | Boiler 1       |            |       | CEM Model:      | Teledyne        |            |           |
| Sample I | _oc: | Stack          |            |       | CEM Serial #:   | 861             |            |           |
| Use?     |      |                |            |       | RM              | CEM             | (RM-CEM)   |           |
| 1 = Y    | Test |                | Start      | End   | NO <sub>X</sub> | NO <sub>x</sub> | Difference | Unit Load |
| 0 = N    | Run  | Date           | Time       | Time  | ppmvd           | ppmvd           | (di)       | (lb/hr)   |
| 1        | 1    | 5/11/22        | 6:35       | 6:55  | 42.6            | 39.9            | 2.700      | 70,872.0  |
| 1        | 2    | 5/11/22        | 7:03       | 7:23  | 40.6            | 38.8            | 1.800      | 71,936.5  |
| 0        | 3    | 5/11/22        | 7:31       | 7:51  | 45.4            | 42.5            | 2.900      | 73,297.6  |
| 1        | 4    | 5/11/22        | 7:58       | 8:18  | 43.1            | 40.6            | 2.500      | 72,591.3  |
| 1        | 5    | 5/11/22        | 8:26       | 8:46  | 42.9            | 40.4            | 2.500      | 71,731.1  |
| 1        | 6    | 5/11/22        | 8:53       | 9:13  | 42.9            | 40.3            | 2.600      | 71,648.8  |
| 1        | 7    | 5/11/22        | 9:20       | 9:40  | 42.9            | 40.3            | 2.600      | 71,138.9  |
| 1        | 8    | 5/11/22        | 9:47       | 10:07 | 42.9            | 40.4            | 2.500      | 70,917.7  |
| 1        | 9    | 5/11/22        | 10:14      | 10:34 | 42.7            | 40.0            | 2.700      | 70,156.7  |
| 1        | 10   | 5/11/22        | 10:41      | 11:01 | 42.8            | 40,1            | 2.700      | 71,463.3  |

| n                      | 9      |         |
|------------------------|--------|---------|
| t(0.975)               | 2.306  |         |
| Mean RM Value          | 42.600 | RM      |
| Mean CEM Value         | 40.089 | CEM avg |
| Mean Difference        | 2.511  | d avg   |
| Standard Deviation     | 0,280  | sd      |
| Confidence Coefficient | 0.216  | CC      |
| RA based on RM         | 6.40   | %       |



Nitrogen Oxides (NO $_{\chi}$ ), lb/MMBtu 40CFR60 3A, 7E

RATA Type: Regulation: RM Used:

| Custome  | r:   | Resolute Forres | st Produc | ls    | Project #:      | 487931          |            |           |
|----------|------|-----------------|-----------|-------|-----------------|-----------------|------------|-----------|
| Unit ID: |      | Boiler 1        |           |       | CEM Model:      | Teledyne        |            |           |
| Sample I | _OC: | Stack           |           |       | CEM Serial #:   | 861             |            |           |
| Use?     |      |                 |           |       | RM              | CEM             | (RM-CEM)   |           |
| 1 = Y    | Test |                 | Start     | End   | NO <sub>X</sub> | NO <sub>x</sub> | Difference | Unit Load |
| 0 = N    | Run  | Date            | Time      | Time  | lb/MMBtu        | lb/MMBtu        | (di)       | (lb/hr)   |
| 1        | 1    | 5/11/22         | 6:35      | 6:55  | 0.056           | 0.052           | 0.004      | 70,872.0  |
| 1        | 2    | 5/11/22         | 7:03      | 7:23  | 0.053           | 0.050           | 0.003      | 71,936.5  |
| 0        | 3    | 5/11/22         | 7:31      | 7:51  | 0.059           | 0.055           | 0.004      | 73,297.6  |
| 1        | 4    | 5/11/22         | 7:58      | 8:18  | 0.056           | 0.053           | 0.003      | 72,591.3  |
| 1        | 5    | 5/11/22         | 8:26      | 8:46  | 0.056           | 0.053           | 0.003      | 71,731.1  |
| 1        | 6    | 5/11/22         | 8:53      | 9:13  | 0.056           | 0.053           | 0.003      | 71,648.8  |
| 1        | 7    | 5/11/22         | 9:20      | 9:40  | 0.056           | 0.053           | 0.003      | 71,138.9  |
| 1        | 8    | 5/11/22         | 9:47      | 10:07 | 0.056           | 0.053           | 0.003      | 70,917.7  |
| 1        | 9    | 5/11/22         | 10:14     | 10:34 | 0.056           | 0.053           | 0.003      | 70,156.7  |
| 1        | 10   | 5/11/22         | 10:41     | 11:01 | 0.056           | 0.053           | 0.003      | 71,463.3  |

| n                      | 9      |         |
|------------------------|--------|---------|
| t(0.975)               | 2,306  |         |
| Mean RM Value          | 0.056  | RM avg  |
| Mean CEM Value         | 0.053  | CEM avg |
| Mean Difference        | 0.0031 | d avg   |
| Standard Deviation     | 0.000  | sd      |
| Confidence Coefficient | 0.000  | CC      |
| RA based on RM         | 6.05   | %       |



RATA Type: Regulation: RM Used:

Oxygen (O<sub>2</sub>), % by volume 40CFR60

3A

| Custome  | r:   | Resolute Forre | st Produc | ts    | Project #:     | 487931    |            |           |
|----------|------|----------------|-----------|-------|----------------|-----------|------------|-----------|
| Unit ID: |      | Boiler 1       |           |       | CEM Model:     | Teledyne  |            |           |
| Sample L | LOC: | Stack          |           |       | CEM Serial #:  | 861       |            |           |
| Use?     |      |                |           |       | RM             | CEM       | (RM-CEM)   |           |
| 1 = Y    | Test |                | Start     | End   | O <sub>2</sub> | $O_2$     | Difference | Unit Load |
| 0 = N    | Run  | Date           | Time      | Time  | % v/v dry      | % v/v dry | (di)       | (lb/hr)   |
| 1        | 1    | 5/11/22        | 6:35      | 6:55  | 4.3            | 4.3       | 0.000      | 70,872.0  |
| 1        | 2    | 5/11/22        | 7:03      | 7:23  | 4.1            | 4.1       | 0.000      | 71,936.5  |
| 1        | 3    | 5/11/22        | 7:31      | 7:51  | 4.1            | 4.1       | 0.000      | 73,297.6  |
| 0        | 4    | 5/11/22        | 7:58      | 8:18  | 4.1            | 4.2       | -0.100     | 72,591.3  |
| 1        | 5    | 5/11/22        | 8:26      | 8:46  | 4.3            | 4.3       | 0.000      | 71,731.1  |
| 1        | 6    | 5/11/22        | 8:53      | 9:13  | 4.3            | 4.3       | 0.000      | 71,648.8  |
| 1        | 7    | 5/11/22        | 9:20      | 9:40  | 4.3            | 4.3       | 0,000      | 71,138.9  |
| 1        | 8    | 5/11/22        | 9:47      | 10:07 | 4.3            | 4.3       | 0.000      | 70,917.7  |
| 1        | 9    | 5/11/22        | 10:14     | 10:34 | 4.4            | 4.4       | 0.000      | 70,156.7  |
| 1        | 10   | 5/11/22        | 10:41     | 11:01 | 4.4            | 4.4       | 0.000      | 71,463.3  |

| n                             | 9     |            |
|-------------------------------|-------|------------|
| t(0.975)                      | 2.306 |            |
| Mean RM Value                 | 4.278 | RM avg     |
| Mean CEM Value                | 4.278 | CEM avg    |
| Mean Difference               | 0.000 | d avg      |
| Standard Deviation            | 0.000 | sd         |
| Confidence Coefficient        | 0.000 | CC         |
| RA based on RM                | 0.00  | %          |
| RA (Absolute Mean Difference) | 0.00  | %vol diff. |

## **APPENDIX**



## **AETB and QI Information Summary**

| Facility Name: | Resolute Forest Products |
|----------------|--------------------------|
| Location:      | Utility Boiler 1         |
| Test Date:     | May 11, 2022             |

| Test Parameters:   | Methods 3A and 7E             |
|--------------------|-------------------------------|
| QI Last Name:      | Wells                         |
| QI First Name:     | David                         |
| QI Middle Initial: | Α.                            |
| AETB Name:         | TRC Environmental Corporation |
| AETB Phone No:     | 312-533-2037                  |
| AETB Email:        | Dwells@trccompanies.com       |
| Group 3 Exam Date: | 10-31-2017                    |
| Provider Name:     | Source Evaluation Society     |
| Provider Email:    | qstiprogram@gmail.com         |
| Provider Name:     | TRC Environmental Corporation |
| Provider Email:    | emackinnon@trccompanies.com   |