PERFORMANCE TEST REPORT ANR PIPELINE COMPANY BRIDGMAN COMPRESSOR STATION TURBINES EUBG013 (1210) AND EUBG014 (1211)

July 5, 2022 & July 8, 2022

Prepared for:

RECEIVED

AUG 1 0 2022

AIR QUALITY DIVISION

ANR Pipeline Company 3372 Browntown Road Bridgman, MI

> PTI No. 92-20 SRN No. N5575

> > Prepared by:

Environmental Quality Management, Inc. 1280 Arrowhead Court Suite 2 Crown Point, IN 46307 (219) 661-9900 www.egm.com

PN: 050812.0029

July 2022

i

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

PREFACE

I, Karl Mast, do hereby certify that the source emissions testing conducted at ANR Pipeline Company in Bridgman, MI was performed in accordance with the procedures set forth by the United States Environmental Protection Agency, and that the data and results submitted within this report are an exact representation of the testing.

" Masi

Karl Mast Test Supervisor

I, Karl Mast, do hereby attest that all work on this project was performed under my direct supervision, and that this report accurately and authentically presents the source emissions testing conducted at ANR Pipeline Company's Bridgman Compressor Station in Bridgman, MI.

Mast

Karl Mast Test Supervisor

RECEIVED AUG 1 0 2022

AIR QUALITY DIVISION

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

SUMMARY

The compliance testing was performed on the Stationary Turbine system in accordance with the requirements of the Title 40, Code of Federal Regulations, Part 60 (40 CFR 60, Subpart KKKK). The results of the testing are detailed in the following table.

EUBG013 (Unit 1210)- Test Results							
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail	
NO _x ppmvd @ 15% O ₂	7.3312	7.2935	6.7108	7.1118	25	Pass	
NO _x Lbs/Hr	2.2599	2.9977	2.7582	2.6719	7.6	Pass	
CO Lbs/Hr	1.3647	1.7604	1.6594	1.5948	7.7	Pass	

EUBG014 (Unit 1211)- Test Results							
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail	
NO _x ppmvd @ 15% O ₂	8.6579	8.5506	8.1527	8.4537	25	Pass	
NO _x Lbs/Hr	2.6338	2.6349	2.5123	2.5937	3.1	Pass	
CO Lbs/Hr	1.4245	1.3921	1.3299	1.3822	3.2	Pass	

CONTENTS

Prefac	се	i	I
Summ	nary	jii	ĺ
1	Introduction	1	
2	Test Results Summary		
3	Facility and Process Conditions		
	Test Procedures		,
5	Quality Assurance Procedures		,
6	Conclusions		,

TABLES

1	EUBG013 Test Results Summary	. 3
2	EUBG014 Test Results Summary	
3	EUBG013 Operating Parameters/Ambient Conditions	. 4
4	EUBG013 Emission Concentrations/Calculated Mass Emissions	
	& Concentrations/Calculated Flows	. 5
5	EUBG014 Operating Parameters/Ambient Conditions	. 6
6	EUBG014 Emission Concentrations/Calculated Mass Emissions	
	& Concentrations/Calculated Flows	. 7
7	EUBG013 Production Data	. 8
8	EUBG014 Production Data	. 9
9	EUBG013 General Information	10
10	EUBG014 General Information	11

FIGURES

1	Flow Schematic12

APPENDICES

A –	Field	Test	Data
-----	-------	------	------

B –	Process	Operating	Data
-----	---------	-----------	------

- C Gas Certifications
- D Sample Calculation
- E Correspondence

1. INTRODUCTION

This report presents the results of the source emissions testing conducted by Environmental Quality Management, Inc. (EQM) for ANR Pipeline Company (ANR) at Bridgman Compressor Station, Bridgman, MI, in Berrien County.

The primary purpose of this testing program was to conduct emissions testing that is required by Permit to Install 92-20 and [40 CFR 60, Subpart KKKK] for the turbines EUBG013 and EUBG014 at ANR's gas compressor facility.

EQM's responsibility was to conduct the compliance testing for the O_2 , CO and NO_x emissions rates and perform data reduction for conformance evaluation. ANR Pipeline Company's responsibility was to maintain process operating parameters and to assist in providing process operating data per compliance test requirements.

The following report provides information pertaining to ANR's process operations, and compliance testing. The compliance testing conducted on the stationary turbine EUBG013 (Unit 1210)- was performed on July 5, 2022, from 1:40 P.M. to 4:49 P.M. The compliance testing conducted on the stationary turbine EUBG014(Unit 1211) was performed on July 8, 2022, from 9:25 A.M. to 12:34 P.M.

The following requirements were specific for the testing program:

- 1. Equipment calibrations performed and calibration data provided.
- 2. Three (3) sixty (60) -minute, minimum, O₂, CO, and NOx test runs performed at the turbines at maximum achievable load and speed according to pipeline conditions pursuant to EPA, Title 40, Code of Federal Regulations, Part 60, Appendix A.
- 3. Process manufacturing operations maintained at 100% +/- 5% of capacities and production and fuel consumption rates recorded during the emissions testing periods.
- 4. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for O₂, CO and NOx emissions determinations.
- 5. Stratification was found to be less than 5% in the turbine exhaust(s).
- 6. Diluent corrected stratification test was performed in accordance with Subpart KKKK.

The testing program was approved by and/or coordinated with Pedro Amieva, ANR

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

Pipeline Company. The emission testing was overseen by Karl Mast, Manager, Emission Measurement and Project Manager, EQM. The emissions testing was performed by Zach Hill, Field Testing Activities Lead and Garrett Cox, Test Technician I, EQM. The emission testing was observed by Amanda Chapel, EGLE on July 5, 2022. The emission testing was not observed by EGLE on July 8, 2022.

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

2. TEST RESULTS SUMMARY

The compliance testing was performed on the stationary EUBG013 and EUBG014 systems in accordance with the requirements of the Title 40, Code of Federal Regulations, Part 60 (40 CFR 60, Appendix A). A summary of the test results is given below:

Table 1. EUBG013 (Unit 1210)-Test Results							
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail	
NO _x ppmvd @ 15% O ₂	7.3312	7.2935	6.7108	7.1118	25	Pass	
NO _x Lbs/Hr	2.2599	2.9977	2.7582	2.6719	7.6	Pass	
CO Lbs/Hr	1.3647	1.7604	1.6594	1.5948	7.7	Pass	

Table 2. EUBG014 (Unit 1211)-Test Results							
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail	
NO _x ppmvd @ 15% O ₂	8.6579	8.5506	8.1527	8.4537	25	Pass	
NO _x Lbs/Hr	2.6338	2.6349	2.5123	2.5937	3.1	Pass	
CO Lbs/Hr	1.4245	1.3921	1.3299	1.3822	3.2	Pass	

Based on the information provided above, the stationary turbines EUBG013 and EUBG014 met the acceptance criteria during the course of the testing. A complete list of performance parameters for each test run that was performed at the stack sampling locations can be found in Table 3-11.

Additional testing information may be found in Appendix A.

July 2022

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

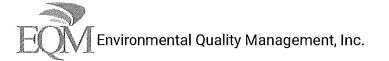
Run	1	2	3	
Date	07/08/22	07/08/22	07/08/22	
Time	13:40	14:45	15:50	
Engine Operating Conditions	High 1102	High 1102	High 1102	Averages
Unit Horsepower from Control Panel	7,119.0	13,915.0	13,875.0	11,636.3
% Load HP	45.2	88.3	88.0	73.8
Unit Speed (rpm) CT/GG/GP/Jet	10,430.9	11,402.5	11,402.5	11,078.7
% CT Speed	93.4	102.1	102.1	99.2
Gas Compressor Speed (rpm) PT/Booster	6,235.0	7,667.0	7,642.0	7,181.3
% PT Speed	65.6	80.7	80.4	75.6
Turbine Exhaust Temp T5	1,273.0	1,311.0	1,311.0	1,298.3
Compressor Suction Pressure (PSIG)	601.0	585.0	582.0	589.3
Compressor Suction Temperature (°F)	63.0	61.0	61.0	61.7
Compressor Discharge Pressure (PSIG)	705.0	777.0	783.0	755,0
Compressor Discharge Temperature (°F)	87.0	101.0	103.0	97.0
Compressor Flow (MMSCF/D)	879.0	1003.0	957.0	946.3
Heat Rate (BTU(LHV)/HP-hr)	10,638.6	7,257.0	7,277.9	8,391.2
Ambient Conditions				
Ambient Temperature (°F)	87.00	88.00	90.00	88.33
Barometric Pressure (psi)	14.29	14.29	14.28	14.29
Ambient Relative Humidity (%)	82.00	78.00	79.00	79.67
Absolute Humidity (grains/LB)	164.89	161.80	175.15	167.28

Table 3. Operating Parameters and Ambient Conditions-EUBG013 (1210)

Table 4. Emissions Concentrations & Calculated Mass Emissions/CalculatedEmissions Concentrations/Calc ulated Flows-EUBG013 (1210)

Run	1	2	3	
Date	07/08/22	07/08/22	07/08/22	•
Time	13:40	14:45	15:50	
Emissions Concentrations & Calculated Mass Em	issions	en der der Annen der State in der State d State der State der St		n na station a statio In the station a stati
NO _x ppm (BIAS Corrected)	7.530	7.380	6.870	7.260
NO _X g/BHP-HR	0.1440	0.0977	0.0902	0.1106
NO _X LB/HR	2.2599	2.9977	2,7582	2.6719
NO _x (ppm @ 15% O ₂)	7.3312	7.2935	6.7108	7.1118
NO _x (ppm @ 15% O ₂ , ISO)	9.5067	9,3527	8.8767	9.2454
NOx LB/MMBTU	0.0270	0,0269	0.0247	0.0262
NO _X Tons/Year	9,8983	13.1298	12.0808	11.7030
NO _X LB/SCF Fuel	2.90E-05	2.89E-05	2.66E-05	2.82E-05
NO _X LB/MMSCF Fuel	29,0317	28,8823	26,5748	28.1629
CO ppm (BIAS Corrected)	7.470	7.120	6,790	7.127
CO g/BHP-HR	0.0870	0.0574	0.0542	0.0662
CO LB/HR	1.3647	1.7604	1.6594	1.5948
CO LB/MMBTU **	0.0163	0.0158	0.0149	0.0156
CO (ppm @ 15% O ₂)	7.2728	7.0365	6.6326	6,9806
CO (ppm @ 15% O ₂ , ISO)	9,4309	9.0232	8,7733	9,0758
CO Tons/Year	5.9772	7.7107	7,2681	6,9853
CO LB/SCF Fuel	1.75E-05	1.70E-05	1.60E-05	1.68E-05
CO LB/MMSCF Fuel	17.5311	16,9616	15,9880	16.8269
% O2 (BIAS Corrected)	14.840	14.930	14.860	14.877
Calculated Flows				
Fuel Flow - (SCFM)	1300.0000	1733.3333	1733.3333	1588.8889
Fuel Flow - (SCFH)	78,000.0	104,000.0	104,000.0	95,333.3333
Exhaust Flow Method 19 (scfm)	41,807.7291	56,583.9951	55,928.2203	51,439.9815
BSAC, #/BHP-hr	25.7789	17.8474	17.6934	20.4399
Fuel Flow Measurements			an a	
Fuel Flow From Screen(MSCFH)	78.00	104.00	104.00	95.33
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION * BASED ON CARBON BALANCE (STOICH. + 02)	Run 1	Run 2	Run 3	

Run	1	2	3	
Date	07/08/22	07/08/22	07/08/22	
Time	9:25	10:30	11:35	
Engine Operating Conditions	High 1102	High 1102	High 1102	Averages
Unit Horsepower from Control Panel	10,951.0	11,692.0	12,184.0	11,609.0
% Load HP	100.0	106.7	111.2	106.0
Unit Speed (rpm) CT/GG/GP/Jet	15,154.4	15,154.4	15,169.6	15,159.5
% CT Speed	99.7	99.7	99.8	99.7
Gas Compressor Speed (rpm) PT/Booster	12,001.0	11,980.0	12,001.0	11,994.0
% PT Speed	100.0	99.8	100.0	100.0
Turbine Exhaust Temp T5	1,367.0	1,373.0	1,383.0	1,374.3
Compressor Suction Pressure (PSIG)	597.0	603.0	609.0	603.0
Compressor Suction Temperature (°F)	73.0	74.0	74.0	73.7
Compressor Discharge Pressure (PSIG)	638.0	647.0	656.0	647.0
Compressor Discharge Temperature (°F)	99.0	101.0	102.0	100.7
Compressor Flow (MMSCF/D)	1011.0	1015.0	1021.0	1,015.7
Heat Rate (BTU(LHV)/HP-hr)	6,825.0	6,475.5	6,214.0	6,504.9
Ambient Conditions				
Ambient Temperature (°F)	79.00	79.00	80.00	79.33
Barometric Pressure (psi)	14.36	14.36	14.36	14.36
Ambient Relative Humidity (%)	88.00	85.00	85.00	86.00
Absolute Humidity (grains/LB)	135.19	130,45	134.87	133.50


Table 5. Operating Parameters and Ambient Conditions-EUBG014 (1211)

July 2022

6

Table 6. Emissions Concentrations & Calculated Mass Emissions/Calculated Emissions Concentrations/Calculated Flows-EUBG014 (1211)

Run	1	2	3	
Date	07/08/22	07/08/22	07/08/22	
Time	9:25	10:30	11:35	
Emissions Concentrations & Calculated Mass En	ussions			
NO _x ppm (BIAS Corrected)	8.790	8.710	8.360	8.620
NO _X g/BHP-HR	0.1091	0.1022	0.0935	0.1016
NO _X LB/HR	2.6338	2.6349	2.5123	2.5937
NO _X (ppm @ 15% O ₂)	8.6579	8.5506	8.1527	8.4537
NO _X (ppm @ 15% O ₂ , ISO)	10.5699	10.3052	9.9146	10.2632
NOx LB/MMBTU	0.0319	0.0315	0.0300	0.0311
NO _X Tons/Year	11.5361	11.5410	11.0040	11.3604
NO _X LB/SCF Fuel	3.43E-05	3.38E-05	3.23E-05	3.35E-05
NO _X LB/MMSCF Fuel	34.2747	33,8497	32.2747	33.4664
CO ppm (BIAS Corrected)	7.8100	7.5600	7.2700	7.5467
CO g/BHP-HR	0.0590	0.0540	0.0495	0.0542
CO LB/HR	1.4245	1.3921	1.3299	1.3822
CO LB/MMBTU **	0.0172	0.0166	0.0159	0.0166
CO (ppm @ 15% O ₂)	7.6927	7.4216	7.0898	7.4013
CO (ppm @ 15% O ₂ , ISO)	9.3914	8.9446	8.6219	8.9860
CO Tons/Year	6.2392	6.0976	5.8249	6.0539
CO LB/SCF Fuel	1.85E-05	1.79E-05	1.71E-05	1.78E-05
CO LB/MMSCF Fuel	18.5373	17.8842	17.0845	17.8353
% O ₂ (BIAS Corrected)	14.910	14.890	14.850	14.883
Calculated Flows				
Fuel Flow - (SCFM)	1283.3	1300.0	1300.0	1294.4444
Fuel Flow - (SCFH)	77000.0	78000.0	78000.0	77666.6667
Exhaust Flow Method 19 (scfm)	41740.7419	42142.1212	41863.4956	41915.4529
BSAC, #/BHP-hr	16.7294	15.8203	15.0821	15.8773
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	77.00	78.00	78.00	77.67
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION * BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	Run 1	Run 2	Run 3	· · · · · · · · · ·

3. PROCESS DESCRIPTION

ANR Bridgman Compressor Station is located in Bridgman, MI and operates two natural gas fired simple cycle combustion turbines. Each turbine drives a natural gas compressor. The plant is located at 3372 Browntown Road, Bridgman, MI.

The following tables provide a summary of the production rates for the EUBG013 and EUBG014 during the test:

Table 7. EUBG013 (Unit 1210) Production Data					
Parameter	Run 1	Run 2	Run 3	Average	Rated
CT RPM	10,430.9	11,402.5	11,402.5	11,078.7	11,168
CT Speed %	93.4	102.1	102.1	99.2	N/A
PT RPM	6,235.0	7,667.0	7,642.0	7,181.3	9,500
PT Speed %	65.6	80.7	80.4	75.6	N/A
Horsepower	7,119.0	13,915.0	13,875.0	11,636.3	15,327
HP Load %	45.2	88.3	88.0	73.8	N/A

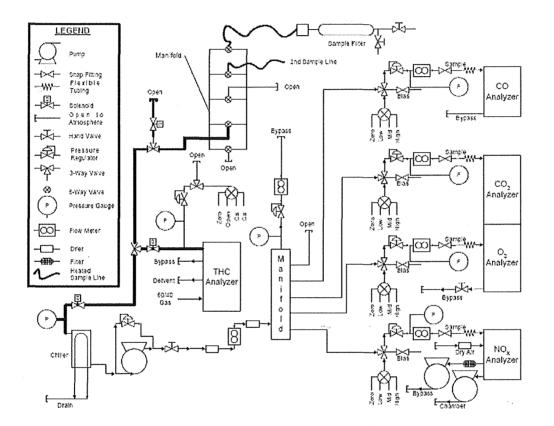
July 2022

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

	Table 8.	EUBG014 (U	nit 1211) Pr	oduction Data	
Parameter	Run 1	Run 2	Run 3	Average	Rated
CT RPM	15,154.4	15,154.4	15,169.6	15,159.5	15,200
CT Speed %	99.7	99.7	99.8	99.7	N/A
PT RPM	12,001.0	11,980.0	12,001.0	11,994.0	12,000
PT Speed %	100.0	99.8	100.0	100.0	N/A
Horsepower	10,951.0	11,692.0	12,184.0	11,609.0	10,953
HP Load %	100.0	106.7	111.2	106.0	N/A

Additional information may be found in Appendix B.

Table 9. EUBG013 (Unit 1210) General Information


AUG 1 0 2022

General Information Date: **Permit Limits** 8-Jul-22 Company: TC Energy Bridgeman Station: Unit: 1211/14 Limits are actually listed as average values Engine Type: Taurus 70 CT Rated RPM: 15200 RPM PT Rated RPM: 12000 RPM Rated BHP: 10953 BHP **Fuel Gas Analysis Fuel Meter Type** Enter Type from List Below Constituent **Mole Percent** 2 0.364 Nitrogen Orifice Meter (upstream pressure tap): 1 **Carbon Dioxide** 0.189 Orifice Meter (downstream pressure tap): 2 Methane 91.227 Electronic Flow Meter (EFM): 3 Ethane 7.823 Venturi (Nozzle) Meter: 4 Propane 0.318 Roots Meter w/ Accumulator: 5 **I-Butane** 0.037 Pipe LD.: N-Butane 0.029 3.068 I-Pentane 0.007 N-Pentane 0.003 Orifice LD.: 1.5 Hexane + 0.005 100.00 Total

Table 10. EUBG014 (Unit 1211) General Information

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

Figure 1. Flow Schematic

Additional Information pertaining to the Fuel Flows may be found in Appendix B.

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

4. TEST PROCEDURES

EQM and EQM's affiliates and subcontractors use current U.S. EPA accepted testing methodologies in their Air Quality Programs as listed in the U.S. Code of Federal Regulations, Title 40, Part 60, Appendix A. For this testing program, the following specific methodologies were utilized:

- U.S. EPA Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 7E Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 10 Determination of Carbon Monoxide Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 19 Determination of Volumetric Flow Rate from Stationary Sources

USEPA Methods 3A, 7E and 19 were performed at the Exhaust Stack sampling location by continuously extracting a gas sample from the stack through a single point stainless steel sample probe. The extracted sample was pulled through a series of filters to remove any particulate matter. Directly after the probe, the sample was conditioned by a series of refrigeration dryers to remove moisture from the gas stream. After the refrigeration dryers, the sample was transported through a Teflon® line to the analyzers. The flow of the stack gas sample was regulated at a constant rate to minimize drift.

At the start of the day, each monitor was checked for calibration error by introducing zero, mid-range and high-range EPA Protocol 1 gases to the measurement system at a point upstream of the analyzers. In this report, the calibration error test is referred to as instrument calibration. The gas was injected into the sampling valve located at the outlet of the sampling probe. The bias test was conducted before and after each consecutive test run by introducing zero and upscale calibration gases for each monitor. The upscale calibration gases used for each monitor were the high calibration gases.

Measurement System Performance Specifications were as follows:

- Analyzer Calibration Error Less than +/- 2% of the span of the zero, mid-range and high-range calibration gases.
- Sampling System Bias Less than +/-5% of the span for the zero, mid-range and high-range calibration gases.
- Zero Drift Less than +/-3% of the span over the period of each test run.

July 2022

• Calibration Drift - Less than +/-3% of the span over the period of each set of runs.

Calculations that were used in this testing event for the TR01 is as follows:

Calibration Correction

$$C_{GAS} = (C_R - C_O) \frac{C_{MA}}{C_M - C_O}$$

Where:

C _{GAS} :	Corrected flue gas concentration (ppmvd)
C _R :	Flue gas concentration (ppmvd)
Co:	Average of initial and final zero checks (ppmvd)
C _M :	Average of initial and final span checks (ppmvd)
C _{MA} :	Actual concentration of span gas (ppmvd)

EPA F-Factor

Mass emissions calculations: the F-Factor Method and guidance from Part 75 was used to calculate the mass emissions rates

$$EM = Cd x Fd x = \frac{20.9}{(20.9 - \%O_2)} x Qh x \frac{GCV}{10^6}$$

Where:

EM:	Pollutant emission rate, lb/hr	
CD:	Pollutant concentration, lb/scf	
Fd:	Fuel specific F-Factor, dscf/MMBtu	
%02:	Oxygen concentration, dry basis	
Qh:	Fuel rate from calibrated AGA specified	Meter, scfh

GVC: Heating value of the fuel, Btu/scf

Mass Emissions (g/bhp-hr)

$$Em = Cd \times Fd \times \frac{20.9}{(20.9 - \%O_2)} \times Qh \times \frac{GCV}{10^6} \times \frac{4536}{BHP}$$

<u>Where:</u>

Em:	Pollutant concentration NO _{x (g/bhp-hr)}
Cd:	Pollutant concentration NO _x lb/scf
%O ₂ :	Oxygen concentration in percent, measured on a dry basis
F _d :	Fuel specific F-factor, dscf/MMBtu
Qh:	Fuel rate, scf/hr
GCV:	Heating value of the fuel, BTU/dscf

To convert from ppmvd NO_x to lb/scf NO_x, multiply the ppmvd value by 1.194 x 1⁻

To convert from ppmvd CO to lb/scf CO, multiply the ppmvd value by 7.268 x 10⁻⁸

Lbs/MMBTU Factor

The lbs/MMBtu factor will be calculated using the pollutant concentration and the fuel specific F-factor as shown

$$Em = Cd \times Fd \times \frac{20.9}{(20.9 - \%O_2)}$$

Where:

Em:	Pollutant concentration (lb/MMBtu)
Cd:	Pollutant concentration lb/scf
%O2:	Oxygen concentration in percent, measured on a dry basis
F _d :	Fuel specific F-factor, dscf/MMBtu

Mass Emissions Calculations lb/hr

$$NO_{\frac{y_b}{h_r}} = C_d \times F_d \times \frac{209}{209 - \%O_2} \times Q_h \times \frac{GCV}{10^6}$$

<u>Where:</u>

- Cd: Pollutant concentration lb/scf
- *F_d*: Fuel specific F-factor, dscf/MMBtu
- Oh: Fuel flow, scf/hr
- %O2: Oxygen concentration in percent, measured on a dry basis
- GCV: Heating value of the fuel, BTU/dscf

NOx Corrected to 15% O2

$$Em = NO_X\left(\frac{5.9}{20.9 - \%O_2}\right)$$

Where:

- Em: Pollutant concentration corrected to 15% 02, ppm
- NOx: Pollutant concentration, ppm
- %02: Oxygen concentration in percent, measured on a dry basis

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

5. QUALITY ASSURANCE PROCEDURES

Each reference method presented in the U.S. Code of Federal Regulations details the instrument calibration requirements, sample recovery and analysis, data reduction and verification, types of equipment required, and the appropriate sampling and analytical procedures to ensure maximum performance and accuracy. EQM and EQM's affiliates and subcontractors adhere to the guidelines for quality control set forth by the United States Environmental Protection Agency. These procedures are outlined in the following documents:

- Code of Federal Regulations, Title 40, Part 51
- Code of Federal Regulations, Title 40, Part 60
- Quality Assurance Handbook, Volume 1, EPA 600/9-76-005
- Quality Assurance Handbook, Volume 2, EPA 600/4-77-027a
- Quality Assurance Handbook, Volume 3, EPA 600/4-77-027b

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

6. CONCLUSIONS

An emissions test was conducted on turbines EUBG013 and EUBG014 at ANR Pipeline Company's Bridgman Compressor Station located in Bridgman, MI. The testing was conducted on July 5, 2022 on the Turbine 13 and July 8, 2022 on The Turbine 14.

During the course of the testing, the turbines EUBG013 and EUBG014 conformed to the requirements of Code of Federal Regulations, Title 40, Part 60, Appendix A.

The usefulness and/or significance of the emissions values presented in this document as they relate to the compliance status of turbines EUBG013 and EUBG014 emissions shall be determined by others. For additional information pertaining to the testing program see Appendix E of this report.

ANR Pipeline Co.-Bridgman 050812.0029 Test Report

A. FIELD TEST DATA