Environmental Consultants

Title

AIR EMISSION TEST REPORT

AIR EMISSION TEST REPORT FOR THE LANDFILL

GAS FUELED INTERNAL COMBUSTION ENGINES

OPERATED AT THE GRANGER WOOD STREET

LANDFILL

Report Date October 8, 2012

Test Dates September 25 - 26, 2012

Facility Informa	
Name	Granger Electric Company
Street Address	16980 Wood St.
City, County	Lansing, Ingham

	357-07A	Facility SRN: N5997	16.44
Facility Perm	it Information		

Testing Contr	actor
Company Mailing Address	Derenzo and Associates, Inc. 39395 Schoolcraft Road Livonia, MI 48150
Phone Project No.	(734) 464-3880 1207002

Environmental Consultants

AIR EMISSION TEST REPORT
FOR THE
LANDFILL GAS FUELED
INTERNAL COMBUSTION ENGINES
OPERATED AT THE
GRANGER WOOD STREET LANDFILL

1.0 INTRODUCTION

Granger Electric Company (Granger) (Facility SRN: N5997) owns and operates four (4) Caterpillar (CAT®) Model No. G3516 landfill gas (LFG) fueled reciprocating internal combustion engines (RICE) and three (3) CAT® Model No. G3520C LFG fueled RICE at the Granger Wood St. Landfill in Lansing, Clinton County, Michigan. The CAT® Model No. G3516 engines are identified as Emission Unit ID: EUICEENGINE1 – 4 (FGICEENGINES2) and the CAT® Model No. G3520C engines are identified as Emission Unit ID: EUICEENGINE5 – 7 (FGICEENGINES) in Permit to Install No. 357-07A. The facility has also been issued Renewable Operating Permit (ROP) No. MI-ROP-N5997-2007a.

Air emission compliance testing was performed to satisfy the following requirements contained in PTI No. 357-07A:

- Test air pollutant emissions for FGICEENGINES in accordance with 40 CFR Part 60 Subpart JJJJ;
- Test one engine of FGICEENGINES for formaldehyde in accordance with Special Condition V.2. of FGICENGINES; and
- Test one engine of FGICEENGINES2 for formaldehyde in accordance with Special Condition V.1. of FGICENGINES2.

The compliance testing was performed by Derenzo and Associates, Inc. (Derenzo and Associates), a Michigan-based environmental consulting and testing company and Prism Analytical Technologies, Inc. (PATI). Derenzo and Associates representatives Tyler Wilson and Andrew Rusnak and PATI representative Ms. Lindsey Wells performed the field sampling and measurements September 25-26, 2012.

The exhaust gas sampling and analysis was performed using procedures specified in the Test Plan dated July 10, 2012 (amended August 15, 2012) that was reviewed and approved by the Michigan Department of Environmental Quality (MDEQ). MDEQ representatives Mr. Tom Gasloli and Mr. Dan McGeen observed portions of the testing project.

Questions regarding this emission test report should be directed to:

Andy Rusnak, QSTI Environmental Engineer Derenzo and Associates, Inc. 4970 Northwind Dr. Ste. 120 East Lansing, MI 48823 Ph: (517) 324-1880 Mr. Dan Zimmerman Compliance Manger Granger Electric Company 16980 Wood Road Lansing, MI 48906 Ph: (517) 371-9711

Derenzo and Associates, Inc.

Granger Electric Company Air Emission Test Report October 8, 2012 Page 2

Report Certification

I certify under penalty of law that I believe the information provided in this document is true, accurate, and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for knowingly submitting false, inaccurate, or incomplete information.

Report Prepared By:

Andrew Rusnak, QSTI

Environmental Engineer

Derenzo and Associates, Inc.

Responsible Official Certification:

Marc Pauley

Operations Manager

Granger Electric Company

2.0 SOURCE AND SAMPLING LOCATION DESCRIPTION

2.1 General Process Description

Landfill gas (LFG) containing methane is generated in the Granger Wood Street Landfill from the anaerobic decomposition of disposed waste materials. The LFG is collected from both active and capped landfill cells using a system of wells (gas collection system). The collected LFG is transferred to the Granger LFG power station facility where it is treated and used as fuel for the seven (7) RICE. Each RICE is connected to an electricity generator that produces electricity that is transferred to the local utility.

2.2 Rated Capacities and Air Emission Controls

The CAT® Model No. G3516 RICE has a rated output of 1,148 brake-horsepower (bhp) and the connected generator has a rated electricity output of 800 kilowatts (kW). The engine is designed to fire low-pressure, lean fuel mixtures (e.g., LFG).

The CAT® Model No. G3520C RICE has a rated output of 2,233 brake-horsepower (bhp) and the connected generator has a rated electricity output of 1,600 kilowatts (kW). The engine is designed to fire low-pressure, lean fuel mixtures (e.g., LFG) and is equipped with an air-to-fuel ratio controller that monitors engine performance parameters and automatically adjusts the air-to-fuel ratio and ignition timing to maintain efficient fuel combustion.

The engine/generator sets are not equipped with add-on emission control devices. Air pollutant emissions are minimized through the proper operation of the gas treatment system and efficient fuel combustion in the engines.

The fuel consumption rate is regulated automatically to maintain the heat input rate required to support engine operations and is dependent on the fuel heat value (methane content) of the treated LFG.

2.3 Sampling Locations

The RICE exhaust gas is directed through mufflers and is released to the atmosphere through dedicated vertical exhaust stacks with horizontal release points. The four (4) CAT® Model G3516 RICE exhaust stacks are identical and the three (3) CAT® Model G3520C RICE exhaust stacks are identical.

The exhaust stack sampling ports for the CAT® Model G3516 engine (EUICEENGINE4) are located in the individual exhaust stack with an inner diameter of 12.0 inches. The stack is equipped with two (2) sample ports, opposed 90°, that provide a sampling location 8.0 inches (0.67 duct diameters) upstream and 26.0 inches (2.17 duct diameters) downstream from any flow disturbance and satisfies the USEPA Method 1 criteria for a representative sample location.

The exhaust stack sampling ports for the CAT® Model G3520C engines (EUICEENGINE5 – 7) are located in individual exhaust stacks with an inner diameter of 13.25 inches. Each stack is equipped with two (2) sample ports, opposed 90°, that provide a sampling location 8.0 inches (0.60 duct diameters) upstream and 100.0 inches (7.55 duct diameters) downstream from any flow disturbance and satisfies the USEPA Method 1 criteria for a representative sample location.

Individual traverse points were determined in accordance with USEPA Method 1.

Appendix A provides diagrams of the emission test sampling locations.

3.0 SUMMARY OF TEST RESULTS AND OPERATING CONDITIONS

3.1 Purpose and Objective of the Tests

The conditions of Permit to Install No. 357-07A and 40 CFR Part 60 Subpart JJJJ require Granger to test each engine contained in FGICEENGINES for carbon monoxide (CO), nitrogen oxides (NOx) and volatile organic compounds (VOCs) every 8,760 hours of operation. The permit also specifies that one engine in FGICEENGINES and one engine in FGICEENGINES2 be tested for formaldehyde. Therefore, each engine contained in FGICEENGINES was sampled for CO, NO_X and VOC emissions and exhaust gas oxygen (O₂) and carbon dioxide (CO₂) content and EUICEENGINE4 and 5 were sampled for formaldehyde to satisfy the testing requirements.

3.2 Operating Conditions During the Compliance Tests

The testing was performed while the Granger engine/generator sets were operated at maximum operating conditions (800 kW / 1,600 kW electricity output +/- 10%). Granger representatives provided the kW output in 15-minute increments for each test period. The EUICEENGINE4 generator kW output ranged between 823 and 853 kW for each test period and the FGICEENGINES generator kW output ranged between 1,477 and 1,543 kW for each test period.

Fuel flowrate (cubic feet per minute), fuel methane content (%) and fuel inlet pressure (psi) were also recorded by Granger representatives in 15-minute increments for each test period. The EUICEENGINE4 fuel consumption rate ranged between 315 and 319 scfm, fuel methane content ranged between 51.2 and 52.1% and fuel inlet pressure ranged between 5.4 and 5.7 psi for each test period. The FGICEENGINES fuel consumption rate ranged between 492 and 508 scfm, fuel methane content ranged between 53.7 and 54.8% and fuel inlet pressure ranged between 16 and 17 psi for each test period.

Appendix B provides operating records provided by Granger representatives for the test periods.

Engine output (bhp) cannot be measured directly and was calculated based on the recorded electricity output, the calculated CAT® Model G3520C generator efficiency (96.0%), and the unit conversion factor for kW to horsepower (0.7457 kW/hp).

Granger Electric Company Air Emission Test Report October 8, 2012 Page 5

Engine output (bhp) = Electricity output (kW) / (0.960) / (0.7457 kW/hp)

A lower heating value of 910 Btu/scf was used to calculate the LFG heating value.

Table 3.1 presents a summary of the average engine operating conditions during the test periods.

3.3 Summary of Air Pollutant Sampling Results

The gases exhausted from the sampled LFG fueled RICE (EUICEENGINE4 through EUICEENGINE7) were each sampled for three (3) one-hour test periods during the compliance testing performed September 25 through September 26, 2012.

Table 3.2 presents the average measured CO, NO_X, VOC and formaldehyde emission rates for the engines (average of the three test periods for each engine).

Test results for each one hour sampling period and comparison to the permitted emission rates is presented in Section 6.0 of this report.

Table 3.1 Average engine operating conditions during the test periods

Engine Parameter	Engine No. 4	Engine No. 5	Engine No. 6	Engine No. 7
Generator output (kW)	837	1,524	1,507	1,491
Engine output (bhp)	1,200	2,129	2,105	2,083
Engine LFG fuel use (scfm)	317	505	503	498
LFG methane content (%)	51.6	54.5	53.9	54.1
LFG lower heating value (Btu)	470	496	490	492
Exhaust temperature (°F)	707	851	836	828
Inlet fuel pressure (psi)	5.5	17	16	17

Derenzo and Associates, Inc.

Granger Electric Company Air Emission Test Report

October 8, 2012 Page 6

Table 3.2 Average measured emission rates for each tested Granger Wood St. facility RICE (three-test average)

	CO Emission Rates		NOx Emission Rates		!			HCOH Emission Rate
Emission Unit	(lb/hr)	(g/bhp- hr)	(lb/hr)	(g/bhp- hr)	(lb/hr)	(g/bhp- hr)	(lb/hr)	
Engine No. 4	-	-	-	<u>-</u>	-	-	0.70	
Engine No. 5	13.5	2.87	3.41	0.73	0.66	0.14	1.78	
Engine No. 6	11.6	2.49	3.00	0.65	0.60	0.13	-	
Engine No. 7	12.6	2.75	2.62	0.57	0.75	0.16	-	

4.0 SAMPLING AND ANALYTICAL PROCEDURES

Test protocols for the air emission testing were reviewed and approved by the MDEQ. This section provides a summary of the sampling and analytical procedures that were used during the Granger testing periods.

4.1 Summary of Sampling Methods

USEPA Method 2	Exhaust gas velocity pressure was determined using a Type-S Pitot tube connected to a red oil incline manometer; temperature was measured using a K-type thermocouple connected to the Pitot tube.
USEPA Method 3A	Exhaust gas O ₂ and CO ₂ content was determined using zirconia ion/paramagnetic and infrared instrumental analyzers, respectively.
USEPA Method 4	Exhaust gas moisture was determined based on the water weight gain in chilled impingers.
USEPA Method 7E	Exhaust gas NOx concentration was determined using chemiluminescence instrumental analyzers.
USEPA Method 10	Exhaust gas CO concentration was measured using NDIR instrumental analyzers.
USEPA Method ALT-078	Exhaust gas VOC (as NMHC) concentration was determined using flame ionization analyzers equipped with GC columns.
USEPA Method 320	Measurement of vapor phase organic and inorganic emissions by extractive Fourier transform infrared (FTIR) spectroscopy.

4.2 Exhaust Gas Velocity Determination (USEPA Method 2)

The RICE exhaust stack gas velocities and volumetric flow rates were determined using USEPA Method 2 prior to and after each test. An S-type Pitot tube connected to a red-oil manometer was used to determine velocity pressure at each traverse point across the stack cross section. Gas temperature was measured using a K-type thermocouple mounted to the Pitot tube. The Pitot tube and connective tubing were leak-checked to verify the integrity of the measurement system.

The absence of significant cyclonic flow for the exhaust configuration was verified using an S-type Pitot tube and oil manometer. The Pitot tube was positioned at each velocity traverse point with the planes of the face openings of the Pitot tube perpendicular to the stack cross-sectional plane. The Pitot tube was then rotated to determine the null angle (rotational angle as measured from the perpendicular, or reference, position at which the differential pressure is equal to zero).

Appendix C provides exhaust gas flowrate calculations and field data sheets.

4.3 Exhaust Gas Molecular Weight Determination (USEPA Method 3A)

CO₂ and O₂ content in the RICE exhaust gas streams were measured continuously throughout each test period in accordance with USEPA Method 3A. The CO₂ content of the exhaust was monitored using a Servomex 4100 single beam single wavelength (SBSW) infrared gas analyzer. The O₂ content of the exhaust was monitored using a Servomex 4100 gas analyzer that uses a paramagnetic sensor.

During each sampling period, a continuous sample of the IC engine exhaust gas stream was extracted from the stack using a stainless steel probe connected to a Teflon® heated sample line. The sampled gas was conditioned by removing moisture prior to being introduced to the analyzers; therefore, measurement of O₂ and CO₂ concentrations correspond to standard dry gas conditions. Instrument response data were recorded using an ESC Model 8816 data acquisition system that monitored the analog output of the instrumental analyzers continuously and logged data as one-minute averages.

Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document). Sampling times were recorded on field data sheets.

Appendix D provides O₂ and CO₂ calculation sheets. Raw instrument response data are provided in Appendix E.

4.4 Exhaust Gas Moisture Content (USEPA Method 4)

Moisture content of the RICE exhaust gas was determined in accordance with USEPA Method 4 using a chilled impinger sampling train. The moisture sampling was performed concurrently with the instrumental analyzer sampling. During each sampling period a gas sample was

extracted at a constant rate from the source where moisture was removed from the sampled gas stream using impingers that were submersed in an ice bath. At the conclusion of each sampling period, the moisture gain in the impingers was determined gravimetrically by weighing each impinger to determine net weight gain.

4.5 NO_x and CO Concentration Measurements (USEPA Methods 7E and 10)

NO_X and CO pollutant concentrations in the RICE exhaust gas streams were determined using a Thermo Environmental Instruments, Inc. (TEI) Model 42c High Level chemiluminescence NO_X analyzer and a TEI Model 48c infrared CO analyzer.

Throughout each test period, a continuous sample of the engine exhaust gas was extracted from the stack using the Teflon® heated sample line and gas conditioning system and delivered to the instrumental analyzers. Instrument response for each analyzer was recorded on an ESC Model 8816 data acquisition system that logged data as one-minute averages. Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias.

Appendix D provides CO and NO_X calculation sheets. Raw instrument response data are provided in Appendix E.

4.6 Measurement of Volatile Organic Compounds (USEPA Method ALT-078)

VOC emission rate was determined by measuring the nonmethane hydrocarbon (NMHC) concentration in the exhaust gas for each RICE. NMHC pollutant concentration was determined using TEI Model 55i Methane / Nonmethane hydrocarbon analyzer.

Throughout each one-hour test period, a continuous sample of the IC engine exhaust gas was extracted from the stack using the Teflon® heated sample line described in Section 4.3 of this document, and delivered to the instrumental analyzer. The sampled gas was not conditioned prior to being introduced to the analyzer; therefore, the measurement of NMHC concentration corresponds to standard wet gas conditions. Instrument NMHC (VOC) response for the analyzer was recorded on an ESC Model 8816 data logging system that monitored the analog output of the instrumental analyzers continuously and logged data as one-minute averages. Prior to, and at the conclusion of each test, the instrument was calibrated using mid-range calibration and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document).

Appendix D provides VOC calculation sheets. Raw instrument response data for the NMHC analyzer is provided in Appendix E.

4.7 Measurement of Formaldehyde (USEPA Method 320)

PATI was contracted to measure the formaldehyde concentration in the EUICEENGINE4 and 5 exhaust gas stream. Formaldehyde concentrations in the RICE exhaust gas streams were determined using a MKS Multigas 2030 FTIR spectrometer.

Throughout each one-hour test period, a continuous sample of the IC engine exhaust gas was extracted from the stack using a Teflon® heated sample line and delivered to the instrumental analyzer. The sampled gas was not conditioned prior to being introduced to the analyzer; therefore, the measurement of formaldehyde concentration corresponds to standard wet gas conditions. Instrument formaldehyde response for the analyzer was recorded continuously and logged data as one-minute averages.

Appendix F provides the PATI laboratory report which presents the formaldehyde results, QA/QC activities and raw instrument response data.

5.0 QA/QC ACTIVITIES

5.1 NO_x Converter Efficiency Test

The NO_2 – NO conversion efficiency of the Model 42c analyzer was verified prior to the testing program. A USEPA Protocol 1 certified concentration of NO_2 was injected directly into the analyzer, following the initial three-point calibration, to verify the analyzer's conversion efficiency. The analyzer's NO_2 – NO converter uses a catalyst at high temperatures to convert the NO_2 to NO for measurement. The conversion efficiency of the analyzer is deemed acceptable if the measured NO_2 concentration is within 90% of the expected value.

The NO_2 – NO conversion efficiency test satisfied the USEPA Method 7E criteria (measured NO_2 concentration was -6.84% of the expected value, i.e., within 10% of the expected value as required by Method 7E).

5.2 Sampling System Response Time Determination

The response time of the sampling system was determined prior to the compliance test program by introducing upscale gas and zero gas, in series, into the sampling system using a tee connection at the base of the sample probe. The elapsed time for the analyzer to display a reading of 95% of the expected concentration was determined using a stopwatch.

The TEI Model 55i analyzer exhibited the longest system response time at 108 seconds. Results of the response time determinations were recorded on field data sheets. For each test period, test data were collected once the sample probe was in position for at least twice the maximum system response time.

5.3 Gas Divider Certification (USEPA Method 205)

A Millennium Instruments, Inc. Model 2002RM Cal Gas Diluter six-step gas divider was used to obtain appropriate calibration span gases. The six-step Millennium gas divider was NIST certified (on March 15, 2012) with a primary flow standard in accordance with Method 205. When cut with an appropriate zero gas, the six-step Millennium gas divider delivered calibration gas values at 25%, 30%, 50%, 60%, 80% and 100% of the USEPA Protocol 1 calibration gas that was introduced into the system. The field evaluation procedures presented in Section 3.2 of Method 205 were followed prior to use of gas divider. The field evaluation yielded no errors greater than 2% of the triplicate measured average and no errors greater than 2% from the expected values.

5.4 Instrumental Analyzer Interference Check

The instrumental analyzers used to measure NO_X, CO, O₂ and CO₂ have had an interference response test preformed prior to their use in the field (July 26, 2006, June 21, 2011 and April 3, 2012), pursuant to the interference response test procedures specified in USEPA Method 7E. The appropriate interference test gases (i.e., gases that would be encountered in the exhaust gas stream) were introduced into each analyzer, separately and as a mixture with the analyte that each analyzer is designed to measure. All of analyzers exhibited a composite deviation of less than 3.0% of the span for all measured interferent gases. No major analytical components of the analyzers have been replaced since performing the original interference tests.

5.5 Instrument Calibration and System Bias Checks

At the beginning of each day of the testing program, initial three-point instrument calibrations were performed for the NO_x, CO, CO₂ and O₂ analyzers by injecting calibration gas directly into the inlet sample port for each instrument. System bias checks were performed prior to and at the conclusion of each sampling period by introducing the upscale calibration gas and zero gas into the sampling system (at the base of the stainless steel sampling probe prior to the particulate filter and Teflon® heated sample line) and determining the instrument response against the initial instrument calibration readings.

At the beginning of each test day, appropriate high-range, mid-range, and low-range span gases followed by a zero gas were introduced to the NMHC analyzer, in series at a tee connection, which is installed between the sample probe and the particulate filter, through a poppet check valve. After each one hour test period, mid-range and zero gases were re-introduced in series at the tee connection in the sampling system to check against the method's performance specifications for calibration drift and zero drift error.

The instruments were calibrated with USEPA Protocol 1 certified concentrations of CO₂, O₂, NO_x, and CO in nitrogen and zeroed using hydrocarbon free nitrogen. The NMHC (VOC) instrument was calibrated with USEPA Protocol 1 certified concentrations of propane in air and zeroed using hydrocarbon-free air. A Millennium Instruments, Inc. Model 2002RM Cal Gas Diluter six-step gas divider was used to obtain intermediate calibration gas concentrations as needed.

5.6 Meter Box Calibrations

The Nutech Model 2010 sampling console, which was used for exhaust gas moisture content sampling, was calibrated prior to and after the testing program. This calibration uses the critical orifice calibration technique presented in USEPA Method 5. The metering console calibration exhibited no data outside the acceptable ranges presented in USEPA Method 5.

The digital pyrometer in the Nutech metering consoles were calibrated using a NIST traceable Omega® Model CL 23A temperature calibrator.

Appendix G presents test equipment quality assurance data ($NO_2 - NO$ conversion efficiency test data, instrument calibration and system bias check records, calibration gas and gas divider certifications, interference test results, meter box calibration records, cyclonic flow determinations sheets, Pitot tube and probe assembly calibration records).

6.0 RESULTS

6.1 Test Results and Allowable Emission Limits

Engine operating data and air pollutant emission measurement results for each one hour test period are presented in Tables 6.1 through 6.4.

The measured formaldehyde concentration and emission rate for EUICEENGINE4 is less than the allowable limit (0.75 lb formaldehyde per hour) specified in Permit to Install No. 357-07A.

The measured air pollutant concentrations and emission rates for Engine Nos. 5-7 are less than the allowable limits specified in Permit to Install No. 357-07A for Emission Unit Nos. EUICEENGINE5 through EUICEENGINE7:

- 4.92 lb/hr and 1.0 g/bhp-hr for NO_X;
- 16.23 lb/hr and 3.3 g/bhp-hr for CO;
- 1.0 g/bhp-hr for VOC; and
- 2.10 lb/hr for formaldehyde.

6.2 Variations from Normal Sampling Procedures or Operating Conditions

The testing for all pollutants was performed in accordance with the approved test protocols. The engine-generator sets were operated within 10% of maximum output (800 kW or 1,600 kW generator output) and no variations from the normal operating conditions of the RICE occurred during the engine test periods.

Individual engine fuel flow data for the second test period performed on Engine No. 5 was not recorded (total plant fuel flow was recorded instead) and is not able to be retrieved. Therefore,

Table 6.1 Measured exhaust gas conditions and formaldehyde air pollutant emission rates Granger Wood Street Facility Engine No. 4 (EUICEENGINE4)

Test No.	1	2	3	
Test date	9/25/12	9/25/12	9/25/12	Three Test
Test period (24-hr clock)	1405 - 1505	1530 - 1630	1652 - 1752	Average
Fuel flowrate (scfin)	315	317	318	317
Generator output (kW)	825	839	845	837
Engine output (bhp)	1,183	1,203	1,212	1,200
LFG methane content (%)	52.0	51.6	51.3	51.6
LFG heat content (Btu/scf)	473	470	467	470
Fuel inlet pressure (psi)	5.4	5.5	5.5	5.5
Exhaust Gas Composition				
CO ₂ content (% vol)	13.6	13.3	13.2	13.4
O ₂ content (% vol)	5.86	6.05	6.16	6.02
Moisture (% vol)	11.9	13.6	14.1	13.2
Exhaust gas temperature (°F)	709	707	705	707
Exhaust gas flowrate (scfm)	2,584	2,612	2,642	2,613
Formaldehyde				
HCOH conc. (ppmv)	56.8	57.4	57.8	57.3
HCOH emissions (lb/hr)	0.69	0.70	0.71	0.70
Permitted emissions (lb/hr)	-		-	0.75

Table 6.2 Measured exhaust gas conditions and NO_x, CO, VOC and formaldehyde air pollutant emission rates Granger Wood Street Facility Engine No. 5 (EUICEENGINE5)

Test No.	ı	2	3	
Test date	9/25/12	9/25/12	9/25/12	Three Test
Test period (24-hr clock)	805 - 905	936 - 1036	1130 - 1230	Average
Fuel flowrate (scfm)	506		504	505
Generator output (kW)	1,528	1,521	1,524	1,524
Engine output (bhp)	2,134	2,124	2,128	2,129
LFG methane content (%)	54.4	54.3	54.8	54.5
LFG heat content (Btu/scf)	495	494	498	496
Fuel inlet pressure (psi)	17	17	17	17
Exhaust Gas Composition				
CO ₂ content (% vol)	11.4	10.6	11.5	11.2
O ₂ content (% vol)	8.78	9.36	8.24	8.80
Moisture (% vol)	12.4	-	12.0	12.2
Exhaust gas temperature (°F)	848	850	853	851
Exhaust gas flowrate (dscfm)	3,860	3,880	3,877	3,872
Exhaust gas flowrate (scfm)	4,403	4,417	4,408	4,409

Derenzo and Associates, Inc.

Granger Electric Company Air Emission Test Report October 8, 2012 Page 16

Table 6.2 Continued

Englie 5

Test No.	1	2	3	
Test date	9/25/12	9/25/12	9/25/12	Three Test
Test period (24-hr clock)	805 - 905	936 - 1036	1130 - 1230	Average
Formed John Jo				
Formaldehyde	06.1	06.6	06.0	06.0
HCOH conc. (ppmv)	86.1	86.6	86.0	86.2
HCOH emissions (lb/hr)	1.77	1.79	1.77	1.78
Permitted emissions (lb/hr)	*	-	-	2.10
Nitrogen Oxides				
NO _X conc. (ppmvd)	124	119	125	123
NO _X emissions (g/bhp*hr)	0.73	0.71	0.74	0.73
Permitted emissions (g/bhp*hr)	•	_	-	1.0
NO _X emissions (lb/hr)	3.43	3.32	3.48	3.41
Permitted emissions (lb/hr)	-	-	**	4.92
Carbon Monoxide		•		
CO conc. (ppmvd)	812	756	825	797
CO emissions (g/bhp*hr)	2.91	2.73	2,98	2.87
Permitted emissions (g/bhp*hr)	2,51	2.75	2.50	3.3
CO emissions (lb/hr)	13.7	12.8	14.0	13.5
Permitted emissions (lb/hr)	-	12.0	-	16.23
(=-,14)				
Volatile Organic Compounds				
VOC conc. (ppmv)	21.9	20.6	22.6	21.7
VOC emissions (g/bhp*hr)	0.14	0.13	0.15	0.14
Permitted emissions (g/bhp*hr)	-	-	-	1.0
- '				

Table 6.3 Measured exhaust gas conditions and NO_x, CO and VOC air pollutant emission rates Granger Wood Street Facility Engine No. 6 (EUICEENGINE6)

Test No.	1	2	3	
Test date	9/26/12	9/26/12	9/26/12	Three Test
Test period (24-hr clock)	754 - 854	919 - 1019	1041 – 1141	Average
Fuel flowrate (scfm)	500	504	505	503
Generator output (kW)	1,507	1,508	1,505	1,507
Engine output (bhp)	2,105	2,107	2,103	2,105
LFG methane content (%)	54.1	54.0	53.8	53.9
LFG heat content (Btu/scf)	492	491	489	490
Fuel inlet pressure (psi)	16	16	16	16
Exhaust Gas Composition				
CO ₂ content (% vol)	11.3	11.3	11.0	11.2
O ₂ content (% vol)	8.44	8.60	8.94	8.66
Moisture (% vol)	11.7	12.2	12.4	12.1
1110151410 (70 701)	11.7	12.2	12, :	12,1
Exhaust gas temperature (°F)	838	834	833	836
Exhaust gas flowrate (dscfm)	3,910	3,918	3,938	3,922
Exhaust gas flowrate (scfm)	4,441	4,468	4,494	4,468
2.11				
Nitrogen Oxides	112	107	101	107
NO _X conc. (ppmvd)	113	106	101	107
NO _X emissions (g/bhp*hr)	0.68	0.64	0.62	0.65
Permitted emissions (g/bhp*hr)	2.16	-	-	1.0
NO _X emissions (lb/hr)	3.16	2.97	2.86	3.00
Permitted emissions (lb/hr)	-	-	•	4.92
Carbon Monoxide				
CO conc. (ppmvd)	690	685	653	676
CO emissions (g/bhp*hr)	2.54	2.52	2.42	2.49
Permitted emissions (g/bhp*hr)	<u>-</u>	-	-	3.3
CO emissions (lb/hr)	11.8	11.7	11.2	11.6
Permitted emissions (lb/hr)	<u>-</u>	=	•	16.23
(
Volatile Organic Compounds				
VOC conc. (ppmv)	19.5	19.6	19.1	19.4
VOC emissions (g/bhp*hr)	0.13	0.13	0.13	0.13
Permitted emissions (g/bhp*hr)	-	-		1.0

Table 6.4 Measured exhaust gas conditions and NO_x, CO and VOC air pollutant emission rates Granger Wood Street Facility Engine No. 7 (EUICEENGINE7)

		प ्रके. '		
Test No.	1	2	3	
Test date	9/26/12	9/26/12	9/26/12	Three Test
Test period (24-hr clock)	1227 - 1327	1401 - 1501	1522 - 1622	Average
Fuel flowrate (scfm)	500	495	497	498
Generator output (kW)	1,495	1,488	1,491	1,491
Engine output (bhp)	2,088	2,079	2,083	2,083
LFG methane content (%)	53.9	54.1	54.2	54.1
LFG heat content (Btu/scf)	491	492	494	492
Fuel inlet pressure (psi)	17	17	17	17
The same pressure (ps.)	**			•
Exhaust Gas Composition				
CO ₂ content (% vol)	11.4	11.3	10.9	11.2
O ₂ content (% vol)	8.57	8.63	8.97	8.72
Moisture (% vol)	12.2	11.6	11.7	11.8
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Exhaust gas temperature (°F)	830	826	825	828
Exhaust gas flowrate (dscfm)	3,946	4,002	3,991	3,980
Exhaust gas flowrate (sefm)	4,477	4,528	4,518	4,508
Simust gas 110 winter (Boilin)	1, 1, 7,	1,020	1,010	1,000
Nitrogen Oxides				
NO _X conc. (ppmvd)	92.9	93.9	88.3	91.7
NO _X emissions (g/bhp*hr)	0.57	0.59	0.55	0.57
Permitted emissions (g/bhp*hr)		-	-	1.0
NO _X emissions (lb/hr)	2.63	2.69	2.53	2.62
Permitted emissions (lb/hr)	2.03	2.07	2.55	4.92
1 crimited crimssions (16/11)	.			4.72
Carbon Monoxide				
CO conc. (ppmvd)	744	739	698	727
CO emissions (g/bhp*hr)	2.79	2.82	2.65	2.75
Permitted emissions (g/bhp*hr)	2.19	2.02	2.03	3.3
CO emissions (lb/hr)	12.8	12.9	12.2	12.6
	12.0	12.7	12.2	16.23
Permitted emissions (lb/hr)	-	-	**	10.23
Volatile Organic Compounds				
	21.2	30.4	20.9	24.2
VOC conc. (ppmv)				
VOC emissions (g/bhp*hr)	0.14	0.21	0.14	0.16
Permitted emissions (g/bhp*hr)	-	-	-	1.0