

Count on Us°

PM₁₀, VOCs, and HCHO ROP Test Report

EUGT1B

Consumers Energy Company Zeeland Generating Station 425 Fairview Road Zeeland, Michigan 49464 SRN: N6521

January 23, 2019

Test Dates: November 27-28, 2018

Test Performed by the Consumers Energy Company Regulatory Compliance Testing Section Air Emissions Testing Body Laboratory Services Section Work Order No. 6500411 Version No.: 0

N6521_TEST_2018/127

EXECU.	TIVE SUMMARY	IV
1.0	INTRODUCTION	1
1.1	Identification, Location, and Dates of Tests	1
1.2	Purpose of Testing	
1.3	Brief Description of Source	2
1.4	CONTACT INFORMATION	2
2.0	SUMMARY OF RESULTS	
2.1	OPERATING DATA	
2.2	APPLICABLE PERMIT INFORMATION	
2.3	Results	3
3.0	SOURCE DESCRIPTION	
3.1	Process	А
3.2	Process Flow	
3.3	Materials Processed	
3.4	RATED CAPACITY	
3.5	Process Instrumentation	4
4.0	SAMPLING AND ANALYTICAL PROCEDURES	
		_
4.1	DESCRIPTION OF SAMPLING TRAIN AND FIELD PROCEDURES	
4.1.1		
4.1.2		
4.1.3		
4.1.4		
4.1.5 4.1.6		
4.1.6		
4.1.7	, , ,	
4.1.8		
	TEST RESULTS AND DISCUSSION	
5.0		
5.1	TABULATION OF RESULTS	
5.2	Significance of Results	
5.3	VARIATIONS FROM SAMPLING OR OPERATING CONDITIONS	
5.4	Process or Control Equipment Upset Conditions	
5.5	Air Pollution Control Device Maintenance	
5.6	RE-TEST DISCUSSION	
5.7	Results of Audit Samples	
5.8	CALIBRATION SHEETS	
5.9	SAMPLE CALCULATIONS	
5.10	FIELD DATA SHEETS	
5.11	LABORATORY QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES	
5.11.1	1 QA/QC BLANKS	

ţ,

FIGURE 4-1.	UNIT 1B SAMPLING LOCATION AND TEST PORT/TRAVERSE POINT DETAIL	.7
FIGURE 4-2.	METHOD 2 SAMPLE APPARATUS	.8
FIGURE 4-3.	USEPA METHOD 5 SAMPLING TRAIN	.9
FIGURE 4-4.	USEPA METHOD 5 SAMPLE RECOVERY SCHEME	10
FIGURE 4-5.	USEPA METHOD 5 ANALYTICAL SCHEME	10
FIGURE 4-6.	USEPA METHOD 202 SAMPLING TRAIN	11

TABLES

TABLE E-1 EXECUTIVE SUMMARY OF TEST RESULTS	IV
TABLE 1-1 EMISSION LIMITS	1
TABLE 1-2 CONTACT INFORMATION	2
TABLE 2-1 SUMMARY OF TEST RESULTS	
TABLE 4-1 TEST METHODS	5
TABLE 4-2 TEST MATRIX	5
TABLE 4-3 METHOD 5/202 IMPINGER CONFIGURATION	11
TABLE 5-1 QA/QC PROCEDURES	
TABLE 5-2 QA/QC BLANKS	

APPENDICES

Appendix Table 1	Unit 1B 100% Load PM Emission Test Results
Appendix Table 2	Unit 1B 100% Load VOC Emission Test Results
Appendix Table 3	Unit 1B 70% Load PM Emission Test Results
Appendix Table 4	Unit 1B 70% Load VOC Emission Test Results
Appendix A	Sample Calculations
Appendix B	Field Data Sheets
Appendix C	Laboratory Data Sheets
Appendix D	Operating Data
Appendix E	Supporting Documentation

1

EXECUTIVE SUMMARY

Consumers Energy Regulatory Compliance Testing Section (RCTS) personnel conducted filterable particulate matter (FPM), condensable particulate matter (CPM), volatile organic compounds (VOCs) and formaldehyde (HCHO) testing at the exhaust of gas turbine EUGT1B (Unit 1B) operating at the Zeeland Generating Station in Zeeland, Michigan. Unit 1B is a natural gas fired simple-cycle combustion turbine that generates electricity. The test program, performed November 27 and 28, 2018, was conducted to satisfy testing requirements in renewable operating permit (ROP) MI-ROP-B6521-2015a and reestablish lb/mmBtu emission factors to be used with heat input determinations to calculate mass emission rates as specified in Appendix 5 of the ROP.

Triplicate 120-minute FPM, CPM, and VOCs test runs and 60-minute HCHO test runs were conducted following the procedures in USEPA Reference Methods (RM) 1, 2, 4, 5, 18 and 19 in 40 CFR 60, Appendix A, RM 320 in 40 CFR 63, Appendix A and RM 202 in 40 CFR 51, Appendix M. One set of test runs was conducted with Unit 1B operating at 100% load, and another set of test runs was conducted at 70% load as required in the facility's air permit. There were no deviations from the approved stack test protocol or the USEPA Reference Methods therein. The Unit 1B PM less than 10 microns in diameter (PM₁₀), VOCs and HCHO results are summarized in the following table.

Parameter	Units		Run 2	Emission Average Limit ROP		
Unit 1B - 7	0% Load					
	lb/hr	3.52	2.88	5.65	4.02	10.8
PM ₁₀	ton/yr	15.4	12.6	24.8	17.6	47.3
	lb/mmBtu	0.0025	0.0021	0,0041	0.0029	N/A*
1100 [†]	lb/hr	0.42	0.52	0.44	0.46	5.8
$VOCs^{\dagger}$	ton/yr	1.8	2.3	1.9	2.0	25.4
	lb/mmBtu	0.0003	0.0004	0.0003	0.0003	N/A*
HCHO [‡]	ton/yr	1.8	2.3	2.0	2.0	2.35 [‡]
	lb/mmBtu	0.0003	0.0004	0.0003	0.0003	N/A [*]
Jnit 1B - 1	00% Load					
	lb/hr	4.95	2.92	2.15	3.34	10.8
PM ₁₀	ton/yr	21.7	12.8	9.4	14.6	47.3
	lb/mmBtu	0.0028	0.0016	0.0012	0.0018	N/A [*]
	lb/hr	0.29	0.36	0.34	0.33	5.8
$VOCs^{\dagger}$	ton/yr	1.3	1.6	1,5	1.5	25.4
	lb/mmBtu	0.0002	0.0002	0.0002	0.0002	N/A*
HCHO [‡]	ton/yr	1.3	1.6	1.5	1.5	2.35 [‡]
	lb/mmBtu	0.0002	0.0002	0.0002	0.0002	N/A*

Table E-1 Executive Summary of Test Results

*: lb/mmBtu results are used in mass emission calculations with continuous heat input to evaluate compliance with the mass emission limits

⁺: VOCs mass emissions calculated as sum of mass emissions of VOCs detected

* : HCHO limit is applicable to all turbine operations, the presented limit is the permit limit divided by four

Although not consistent with the prescribed compliance methodology in the ROP, the Unit 1B PM_{10} , VOC and HCHO emission results indicate compliance with the mass emission limits in

the permit. The preceding tons per year values are extrapolated assuming continuous operation at the pounds per hour emission rates observed during the testing. The facility uses lb/mmBtu emission factors in conjunction with continuous heat input determinations to calculate mass emission rates, consistent with Appendix 5 of the ROP.

Detailed test results are presented in Appendix Tables 1 and 2. Sample calculations, field data sheets, and laboratory data are presented in Appendices A, B, and C. Operating data and supporting documentation are provided in Appendices D and E.

1.0 INTRODUCTION

This report summarizes the results of compliance particulate matter less than 10 microns in diameter (PM_{10}), volatile organic compounds (VOCs), and formaldehyde (HCHO) testing conducted November 27 and 28, 2018 on EUGT1B (Unit 1B) operating at the Consumers Energy Zeeland Generating Station in Zeeland, Michigan.

This document was prepared using the Michigan Department of Environmental Quality (MDEQ) *Format for Submittal of Source Emission Test Plans and Reports* published in March of 2018. Please exercise due care if portions of this report are reproduced, as critical substantiating documentation and/or other information may be omitted or taken out of context.

1.1 IDENTIFICATION, LOCATION, AND DATES OF TESTS

Consumers Energy Regulatory Compliance Testing Section (RCTS) personnel conducted PM_{10} (as the sum of filterable and condensable PM), VOCs, and HCHO tests at the dedicated exhaust of natural gas-fired combustion turbine Unit 1B operating at the Zeeland Generating Station in Zeeland, Michigan on November 27 and 28, 2018.

A test protocol was submitted to the MDEQ on October 26, 2018 and subsequently approved by Mr. Jeremy Howe, Environmental Quality Analyst, in his letter dated November 21, 2018.

1.2 PURPOSE OF TESTING

Table 1-1

The purpose of the test was to satisfy testing requirements in renewable operating permit (ROP) MI-ROP-B6521-2015a and reestablish lb/mmBtu emission factors to be used with heat input determinations to calculate mass emission rates as specified in Appendix 5 of the ROP. The applicable emission limits are presented in Table 1-1.

Emission Limits								
Parameter	Emission Limit	Units	Applicable Requirement					
EUGT1A, EUG	GT1B							
DM	10.8	lb/hr	MI-ROP-N6521-2015a, Section 1, FGSIMPLECYCLE Emission Limits					
PM ₁₀	47.3	ton/yr						
NOC	5.8	lb/hr						
VOC	25.4	ton/yr						
HCHO ⁺	9.4	ton/yr	MI-ROP-N6521-2015a, Section 1, FGSIMPLECYCLE Emission Limits & FGCOMBINEDCYCLE [†] Emission Limits					

[†]: HCHO limit is applicable to all combustion turbine operations

The ROP requires that testing be performed for one simple cycle and one combined cycle unit not tested at the last test event at 100% and 70% load. Units 1A and 2A were tested in 2013. This report summarizes the testing of Unit 1B, as Unit 2B testing was delayed (Unit 2B outage was extended, testing occurred December 11 and 12, 2018).

1.3 BRIEF DESCRIPTION OF SOURCE

The Zeeland Generating Station operates four General Electric (GE) model 7FA natural gas fired combustion turbines.

1.4 CONTACT INFORMATION

Table 1-2 presents the names, addresses, and telephone numbers for contacts involved in this test program.

Table 1-2 Contact Information

Program Role	Contact	Address
EPA Regional Contact	Compliance Tracker, AE-18J 312-353-2000	Air Enforcement and Compliance Assurance U.S. Environmental Protection Agency-Region 5 77 W. Jackson Boulevard Chicago, Illinois 60604
Regulatory Agency Representative	Ms. Karen Kajiya-Mills Technical Programs Unit Manager 517-335-4874 Kajiya-Millsk@michigan.gov	Michigan Department of Environmental Quality Technical Programs Unit 525 W. Allegan, Constitution Hall, 2nd Floor S Lansing, Michigan 48933
Regulatory Agency Representative	Mr. Jeremy Howe Environmental Quality Analyst 231-878-6687 HoweJ1@michigan.gov	Michigan Department of Environmental Quality Air Quality Division 120 W. Chapin Street Cadillac, Michigan 49601
Test Facility	Mr. J. Homer Manning Environmental Health & Safety 616-237-4004 Homer,ManningIII@cmsenergy.com	Consumers Energy Company Zeeland Generating Station 425 Fairview Road Zeeland, Michigan 49464
Test Team Representative	Mr. Dillon King, QSTI Sr. Engineering Technical Analyst 989-891-5585 Dillon.King@cmsenergy.com	Consumers Energy Company D.E. Karn Power Plant 2742 North Weadock Highway, ESD Trailer #4 Essexville, Michigan 48732
Test Team Representative	Mr. Thomas Schmelter, QSTI Sr. Engineering Technical Analyst 616-738-3234 Thomas.Schmelter@cmsenergy.com	Consumers Energy Company L&D Training Center 17010 Croswell Street West Olive, Michigan 49460

2.0 SUMMARY OF RESULTS

2.1 OPERATING DATA

The simple cycle combustion turbine fired natural gas during the test event. As noted in the test protocol, the achievable load for a combustion turbine varies with ambient conditions. Based upon weather conditions at the time of testing, the 100% load condition was run at the maximum achievable load condition and corresponded to 180 gross megawatts (MWg). The reduced load testing was run at approximately 126 MWg, or 70% of the load achieved at the 100% load condition.

Refer to Attachment D for detailed operating data, which was recorded in Eastern Standard Time (EST).

2.2 APPLICABLE PERMIT INFORMATION

The Zeeland generating station is identified by State Registration Number (SRN) N6521 and operates in accordance with renewable operating permit (ROP) MI-ROP-N6521-2015a. The permit incorporates federal regulations and reports under Federal Registry Service (FRS) Id: 110012534551. EUGT1A and EUGT2A are included in the flexible group FGSIMPLECYCLE. EUGT2A and EUGT2B are included in the FG COMBINEDCYCLE flexible group.

2.3 RESULTS

The Unit 1B PM less than 10 microns in diameter (PM_{10}), VOCs and HCHO results are summarized in Table 2-1 below.

Table 2-1

ounnury of rest Results	Summary	of	Test	Results	
-------------------------	---------	----	------	---------	--

Parameter	Units	1	Run 2	3	Average	Emission Limit ROP
Unit 1B - 70	% Load			-		
	lb/hr	3.52	2.88	5.65	4.02	10.8
PM ₁₀	ton/yr	15.4	12.6	24.8	17.6	47.3
	lb/mmBtu	0.0025	0.0021	0.0041	0.0029	N/A [*]
· · +	lb/hr	0.42	0.52	0.44	0.46	5.8
VOCs [†]	ton/yr	1.8	2.3	1.9	2.0	25.4
	lb/mmBtu	0.0003	0.0004	0.0003	0.0003	N/A*
HCHO [‡]	ton/yr	1.8	2.3	2.0	2.0	2.35 [‡]
	lb/mmBtu	0.0003	0.0004	0.0003	0.0003	N/A*
Unit 1B - 10	0% Load			•		
	lb/hr	4.95	2.92	2.15	3.34	10.8
PM ₁₀	ton/yr	21.7	12.8	9.4	14.6	47.3
	lb/mmBtu	0.0028	0.0016	0.0012	0.0018	N/A*
	lb/hr	0.29	0.29	0.29	0.29	5.8
VOCs [†]	ton/yr	1.3	1.6	1.5	1.5	25.4
	lb/mmBtu	0.0002	0.0002	0.0002	0.0002	N/A*
HCHO [‡]	ton/yr	1.3	1.6	1.5	1.5	2.35 [‡]
	lb/mmBtu	0.0002	0.0002	0.0002	0.0002	N/A*

*: lb/mmBtu results are used in mass emission calculations with continuous heat input to evaluate compliance with the mass emission limits

t: VOCs mass emissions calculated as sum of mass emissions of VOCs detected

* : HCHO limit is applicable to all turbine operations, the presented limit is the permit limit divided by four

Although not consistent with the prescribed compliance methodology in the ROP, the Unit 1B PM_{10} , VOC and HCHO emission results indicate compliance with the mass emission limits in the permit. PM_{10} was determined as the sum of filterable and condensable PM. The preceding tons per year values are extrapolated assuming continuous operation at the pounds per hour emission rates observed during the testing. The facility uses lb/mmBtu emission factors in conjunction with continuous heat input determinations to calculate mass emission rates, consistent with Appendix 5 of the ROP.

Detailed test results are presented in Appendix Tables 1 and 2. Sample calculations, field data sheets, and laboratory data are presented in Appendices A, B, and C. Operating data and supporting documentation are provided in Appendices D and E.

3.0 SOURCE DESCRIPTION

EUGT1B is a simple-cycle natural gas fired combustion turbine directly coupled to an electricity producing generator.

3.1 PROCESS

The Zeeland Generating Station operates four General Electric (GE) model 7FA natural gas fired combustion turbines. Units 1A and 1B are simple cycle units rated at 2,205 mmBtu/hr heat input, with an Upper Bound Range of Operation (UBRO) at 190 megawatts (MW) and a Lower Bound Range of Operation (LBRO) at 17 MW. Units 2A and 2B are combined-cycle units rated at 2,323 mmBtu/hr heat input, with an UBRO at 265 MW and an LBRO at 17 MW.

3.2 PROCESS FLOW

Air pollution control is achieved on all four combustion turbines through the use of Dry Low NOx Burners. The combined cycle units are also equipped with selective catalytic reduction (SCR) systems for controlling NOx.

3.3 MATERIALS PROCESSED

Natural gas is combusted in the turbine producing heat that is used for electricity generation.

3.4 RATED CAPACITY

Units 1A and 1B are rated at 2,205 mmBtu/hr heat input, with an UBRO at 190 MW and a LBRO at 17 MW. Units 2A and 2B are rated at 2,323 mmBtu/hr heat input, with an UBRO at 303 (Unit 2A) and 305 (Unit 2B) MW and an LBRO at 17 MW.

Testing was performed on one simple-cycle unit (Unit 1B, as 1A was tested during the most recent test event in 2013) at 100% and 70% load as required in MI-ROP-N6521-2015a.

3.5 PROCESS INSTRUMENTATION

Operators, environmental technicians, and data acquisition systems continuously monitored the process during testing. One-minute data for the following parameters were collected during each FPM, CPM, VOCs, and HCHO test run:

- total heat input (mmBtu/hr)
- gross electricity output (MWg)
- oxygen (%)
- nitrogen oxides (ppmv, lb/mmBtu)
- carbon monoxide (ppmv, lb/mmBtu)

Due to the various instrumentation systems, the sampling times were correlated to instrumentation times. Refer to Appendix D for operating data.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

RCTS personnel tested for FPM, CPM, VOCs and HCHO using the USEPA test methods presented in Table 4-1. The sampling and analytical procedures associated with each parameter are described in the following sections.

Table 4-1 **Test Methods**

Parameter	Method	USEPA Title
Sampling location	1	Sample and Velocity Traverses for Stationary Sources
Traverse points	2	Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Moisture	4	Determination of Moisture Content in Stack Gases
Filterable Particulate Matter [*]	5	Determination of Particulate Matter Emissions from Stationary Sources
Formaldehyde	18	Measurement of Gaseous Organic Compound Emissions by Gas Chromatography (FTIR)
Emission Rate	19	Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates
Condensable Particulate Matter [*]	202	Dry Impinger Method for Determining Condensable Particulate Emissions From Stationary Sources
Molecular Weight $(CO_2 \text{ and } O_2^{\dagger})$	320	Vapor Phase Organic and Inorganic Emissions by Extractive FTIR
Volatile Organic Compounds	320	

⁺: O_2 values will be determined from certified CEMS measurements ⁺: Methods 5 and 202 will be conducted in conjunction to measure PM_{10}

4.1 DESCRIPTION OF SAMPLING TRAIN AND FIELD PROCEDURES

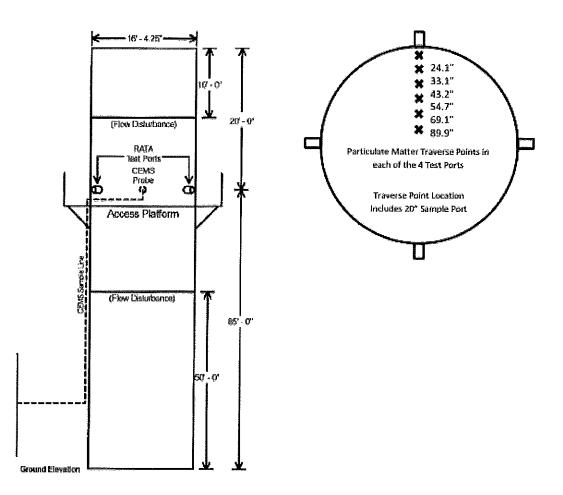
The test matrix presented as Table 4-2 summarizes the sampling and analytical methods performed as specified in this test program.

Table 4-2 **Test Matrix**

Date (2018)	Run	Sample Type	Load (%)	Start Time (EDT)	Stop Time (EDT)	Test Duration (min)	Comment
	1	PM ₁₀ and VOCs	100	9:53	12:06	120	Isokinetic sampling from 24 traverse points collected 3.424 dscm sample volume
Nov. 27	1	нсно	100	10:21	11:21	60	Single point, 1,199.3 milliliter sample volume
	2	PM ₁₀ and VOCs	100	12:43	15:06	120	Isokinetic sampling from 24 traverse points collected 3.425 dscm sample volume

Regulatory Compliance Testing Section GE&S/Environmental & Laboratory Services Department

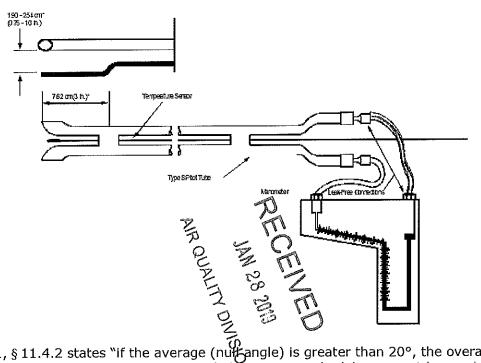
Table 4-2 Test Matrix


Date (2018)	Run	Sample Type	Load (%)	Start Time (EDT)	Stop Time (EDT)	Test Duration (min)	Comment
	2	нсно	100	13:04	14:04	60	Single point, 1,199.4 milliliter sample volume
	3	PM ₁₀ and VOCs	100	15:36	17:55	120	Isokinetic sampling from 24 traverse points collected 3.503 dscm sample volume
Nov. 27	3	нсно	100	16:13	17:13	60	Single point, 1,199.3 milliliter sample volume
	1	PM ₁₀ and VOCs	70	8:41	10:52	120	Isokinetic sampling from 24 traverse points collected 2.850 dscm sample volume
	1	нсно	70	9:03	10:03	60	Single point, 1,199.3 milliliter sample volume
Nov. 28	2	PM ₁₀ and VOCs	70	11:20	13:34	120	Isokinetic sampling from 24 traverse points collected 2.890 dscm sample volume
	2	нсно	70	11:33	12:33	60	Single point, 1,199.3 milliliter sample volume
	3	PM ₁₀ and VOCs	70	14:02	16:20	125	Isokinetic sampling from 24 traverse points collected 2.880 dscm sample volume
	3	нсно	70	14:37	15:37	60	Single point, 1,200.0 milliliter sample volume

4.1.1 SAMPLE LOCATION AND TRAVERSE POINTS (USEPA METHOD 1)

The number and location of traverse points for measuring exhaust gas velocity and volumetric airflow was determined in accordance with USEPA Method 1, *Sample and Velocity Traverses for Stationary Sources.* Four test ports are located in the horizontal plane of the approximately 16.35 feet diameter stack. Refer to Figure 4-1 for a drawing showing the traverse points and upstream and downstream disturbances. The sampling ports are situated:

- Approximately 35 feet or 2.1 duct diameters downstream of a flow disturbance, and
- Approximately 20 feet or 1.2 duct diameters upstream of the stack exit


The sample ports are 6-inches in diameter and extend 20 inches beyond the stack wall. The area of the exhaust duct was calculated and the cross-sectional area divided into a number of equal areas based on distances to air flow disturbances. Flue gas was sampled for five minutes at each of the six traverse points from the four sample ports for a total of 24 sample points and 120 minutes.

4.1.2 VELOCITY AND TEMPERATURE (USEPA METHOD 2)

The exhaust gas velocity and temperature were measured using USEPA Method 2, Determination of Stack Gas Temperature and Velocity (Type S Pitot Tube). The pressure differential (Δ P) across the positive impact and negative static openings of the Pitot tube inserted in the exhaust duct at each traverse point were measured using an "S Type" (Stauscheibe or reverse type) Pitot tube connected to an appropriately sized oil filled inclined manometer. Exhaust gas temperatures were measured using a nickelchromium/nickel-alumel "Type K" thermocouple and a temperature indicator. Refer to Figure 4-2 for the Method 2 Pitot tube, thermocouple, and inclined oil-filled manometer configuration.

Figure 4-2. Method 2 Sample Apparatus

Method 1, § 11.4.2 states "if the average (nutrangle) is greater than 20°, the overall flow condition in the stack is unacceptable, and alternative methodology...must be used." The average null yaw angle measured at the Unit 1B exhaust on November 27, 2018 was 5.2°, thus meeting the less than 20° requirement. Since no ductwork and/or stack configuration changes are expected to occur in the future, the null angle information is considered reliable and additional cyclonic flow verification will not be performed. The cyclonic flow testing data is presented in Appendix B.

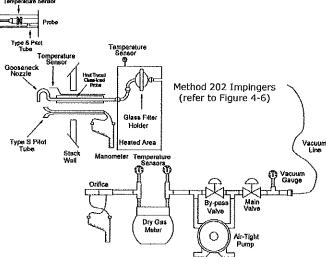
4.1.3 MOLECULAR WEIGHT (CERTIFIED CEMS AND USEPA METHOD 320)

The exhaust gas composition and molecular weight was calculated using O₂ measurements from the certified CEMS during the testing and CO₂ measurements obtained from the FTIR following the sampling and analytical procedures of USEPA Method 320, *Vapor Phase Organic and Inorganic Emissions by Extractive FTIR.* The flue gas oxygen and carbon dioxide concentrations are required to calculate molecular weight, flue gas velocity, and emissions in Ib/mmBtu, Ib/hr, and ton/yr. Refer to Section 4.1.8 for sampling and analytical procedures of USEPA Method 320.

4.1.4 MOISTURE CONTENT (USEPA METHOD 4)

The exhaust gas moisture content was measured using USEPA Method 4, *Determination of Moisture in Stack Gases* in conjunction with the Method 5 and 202 sample apparatus. Flue gas was drawn through a series of impingers immersed in an ice bath to condense and remove water from the sample. The amount of water condensed and collected in the impingers was measured gravimetrically and used to calculate the exhaust gas moisture content.

4.1.5 FILTERABLE PARTICULATE MATTER (USEPA METHOD 5)


Filterable particulate matter samples were collected isokinetically in conjunction with RM 202 following USEPA Method 5, *Determination of Particulate Matter Emissions from Stationary Sources* procedures.

The flue gas is collected using a specifically sized nozzle, probe, quartz-fiber filter, and a series of impingers configured as shown in Method 5/202 Table 4-3. The FPM is collected on the filter and water vapor and/or CPM is collected in the impingers. Figure 4-3 depicts the USEPA Method 5 sample apparatus.

Before testing, a preliminary velocity traverse was performed and/or representative flow data from previous measurements was reviewed to calculate an ideal nozzle size that allowed isokinetic sampling to be performed. A pre-cleaned nozzle that had an inner diameter approximating the calculated value was measured with calipers across three cross-sectional chords, rinsed and brushed with acetone and connected to the sample probe.

The impact and static pressure openings of the Pitot tube were leak-checked at or above a velocity head of 3.0 inches of water for a minimum of 15 seconds. The PM sample train was leak-checked by capping the nozzle opening and applying a vacuum of approximately 15 inches of mercury. The dry-gas meter was monitored for approximately 1 minute to verify a sample apparatus leak rate of less than 0.02 cubic feet per minute (cfm). The sample probe was inserted into the sampling port to begin sampling.

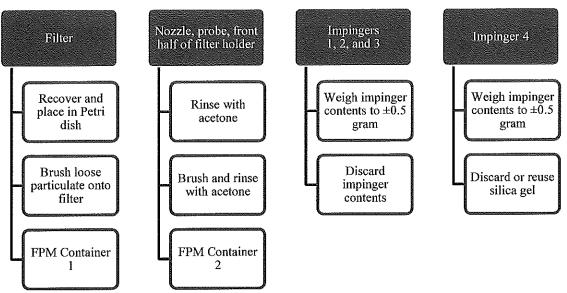
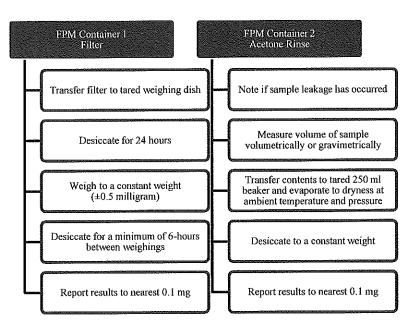
Ice was placed around the impingers and the probe, and filter temperatures were allowed to stabilize to a temperature of $248\pm25^{\circ}$ F before sampling, as applicable. After the desired operating conditions were coordinated with the facility, testing was initiated. Stack and sample apparatus parameters (e.g., flue velocity, temperature) were monitored to ensure isokinetic sample rates were within $100\pm10\%$ for the duration of the test.

Figure 4-3. USEPA Method 5 Sampling Train

At the conclusion of a test run and the post-test leak check, the sample train was disassembled and the impingers and FPM filter housing were transported to the recovery area.

The filter was recovered from the filter housing, placed in a Petri dish, sealed with Teflon tape, and labeled as "FPM Container 1." The nozzle, probe liner, and the front half of the filter housing was triple rinsed with acetone and collected in pre-cleaned sample containers, sealed with Teflon tape, and labeled as "FPM Container 2." The flue gas moisture condensed in the impingers was weighed on an electronic scale to determine flue gas moisture content, after which the impingers were recovered following Method 202 CPM requirements (see Section 4.1.6). Refer to Figure 4-4 for the USEPA Method 5 sample recovery scheme.

The sample containers, including blanks, were transported to the RCTS laboratory for analysis. The sample analysis followed USEPA Method 5 procedures as summarized in the sample recovery scheme presented in Figure 4-5.

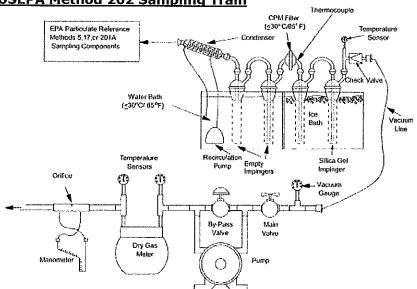

Figure 4-4. USEPA Method 5 Sample Recovery Scheme

Figure 4-5. USEPA Method 5 Analytical Scheme

4.1.6 CONDENSABLE PARTICULATE MATTER (USEPA METHOD 202)

Condensable particulate matter was collected isokinetically in conjunction with USEPA Method 5 using 40 CFR Part 51, EPA Method 202, *Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources.* The Method 202 sample apparatus uses clean, baked glassware comprised of a glass coil type condenser, a dropout impinger, a modified Greenburg-Smith (GS) impinger with an open tube tip, a CPM filter holder containing a Teflon filter, one impinger containing approximately 100 milliliters of water and one impinger containing silica gel. During each CPM run, temperature controlled water recirculated in the coil condenser jacket maintained the CPM filter temperature below 85°F. Refer to Figure 4-6 for a drawing of the Method 202 sample apparatus and Table 4-3 which describes the Method 5/202 impinger configuration.

Figure 4-6. USEPA Method 202 Sampling Train

Table 4-3	Method	57	202	Impinger	Configuration
		- /		ampinger	oomigaration

Impinger Order (Upstream to Downstream)	Impinger Type	Impinger Contents	Amount (gram)
1	Dropout	Empty	0
2	Modified	Empty	0
	CPM	1 Filter	
3	Modified	Water	100
4	Modified	Silica gel desiccant	~200-300

Upon test completion, each impinger was weighed to determine flue gas moisture content. The condenser, dropout and back-up impingers, and the CPM filter housing were then reassembled and purged with Ultra-high purity nitrogen at a rate of approximately 14 liters per minute for a minimum of one hour to remove dissolved sulfur dioxide (SO_2) gases from the impinger water. During the purge, water continued to recirculate in the condenser jacket to maintain the CPM filter exit temperature and the impingers were observed to ensure the contents did not evaporate.

After the nitrogen purge, the condensate collected in the dropout and back-up impingers were transferred to a clean sample bottle labeled as CPM Container #1, Aqueous Liquid Impinger. The back half of the Method 5 filter bell, condenser, impingers and connecting glassware were then rinsed twice with deionized, ultra-filtered water into the same container. The water rinses were followed by an acetone rinse and duplicate hexane rinses

into a separate sample bottle identified as CPM Container #2 (organic rinses). The CPM filter was removed prior to the water and organic rinses and placed in a clean Petri dish identified as CPM Container #3. Liquid levels on the sample bottles were marked and the samples were sealed and transported to Maxxam Analytics laboratory in Mississauga, Ontario for analysis.

4.1.7 FORMALDEHYDE (USEPA METHOD 18)

Formaldehyde concentrations were determined using USEPA Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography via adsorbent tube sampling and analysis. The target organic compound (formaldehyde) was separated by gas chromatography and quantified by the FTIR onsite. Sampling, analytical and calibration procedures followed USEPA Method 18 specifications for adsorbent tube sampling.

A recovery study was performed utilizing two identical trains. One of the sampling trains was designated the spiked train and the other the unspiked train. Formaldehyde was spiked (at 40% to 60% of the expected catch) onto the adsorbent tube in the spiked train prior to sampling. The two trains were sampled simultaneously and the fraction of the spiked compound recovered (R) was calculated in accordance with USEPA Method 18. A complete recovery study will consist of three runs. For the adsorbent tube sampling and analytical procedure to be acceptable, R (in this case the average of three runs) must be \geq 0.70 and \leq 1.30. The calculated R value was 0.969 for the 100% load condition and 0.981 for the 70% load condition. Refer to the laboratory report in Appendix C for detailed data and calibrations.

4.1.8 VOCs AND CARBON DIOXIDE (USEPA METHOD 320)

VOCs and CO2 were measured using the sampling and analytical procedures of USEPA Method 320, Vapor Phase Organic and Inorganic Emissions by Extractive FTIR. Exhaust gas was extracted through a heated stainless steel probe and heated Teflon® sample line prior to being introduced to the FTIR. The stainless steel probe and Teflon® sample line were maintained at approximately 375°F.

Prior to testing a calibration transfer standard (CTS) was used to ensure suitable agreement between the sample and reference spectra. Following the CTS, a spike gas and tracer gas was introduced to the sample line at a constant flowrate of $\leq 10\%$ of the total sample flow. The system passed the QA spike when the average spike concentration was within 0.7 to 1.3 times the expected concentration.

Data was validated and corrected per specifications outlined in USEPA Method 301. A total of 120 minutes of reference spectra data was collected for each run. Following each run, another CTS spectrum was recorded and compared to the pre-test CTS. The pre-test and post-test CTS are required to be within $\pm 5\%$ of the mean value for the run to be valid.

An on-site minimum detectable concentration (MDC) analysis was performed for the target analytes using procedures outlined in ASTM D 6348 A2.3. The MDC was calculated as three times the standard deviation of the concentrations from ten representative background spectra taken during the MDC analysis.

The VOCs tested for with the FTIR were acetylene, propane, propylene, butane, acetaldehyde, ethylene and methanol. No VOCs were detected above the minimum detection limit (0.5 ppmv). Acetylene, propane, propylene, acetaldehyde and ethylene measurements resulted in run averages above zero and were used to calculate emission rates for each respective compound. Total VOC mass and lb/mmBtu emission rates were calculated as the sum of the mass and lb/mmBtu emission rates of the five VOCs plus the mass and lb/mmBtu emission rate of formaldehyde (from M18).

4.1.9 EMISSION RATES (USEPA METHOD 19)

USEPA Method 19, *Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates*, was used to calculate PM₁₀, VOC and formaldehyde emission rates in units of lb/mmBtu. Measured carbon dioxide concentrations and F factors (ratios of combustion gas volumes to heat inputs) were used to calculate emission rates using equation 19-1 from the method; refer to Appendix A for sample calculations.

5.0 TEST RESULTS AND DISCUSSION

The test results obtained as required by MDEQ ROP MI-ROP-N6521-2015a on November 27 and 28, 2018 indicate the average of the three runs performed on Unit 1B for PM_{10} , VOCs and HCHO measured less than the emission limits in Table 1-1 at both load conditions (again, stack testing is not the compliance method; the lb/mmBtu emission factors will be used in conjunction with heat input determinations to calculate mass emissions based upon the proper averaging periods). Therefore, Unit 1B is in compliance with the mass emission limits in the ROP. Refer to Section 2.3 for a summary of the test results.

5.1 TABULATION OF RESULTS

Table 2-1 in Section 2 of this report summarizes the results and Appendix Tables 1 and 2 contains detailed tabulation of results, process operating conditions, and exhaust gas conditions.

5.2 SIGNIFICANCE OF RESULTS

The Unit 1B PM₁₀, VOCs and HCHO results indicate ongoing compliance with the mass emission limits present in MDEQ ROP MI-ROP-N6521-2015a.

5.3 VARIATIONS FROM SAMPLING OR OPERATING CONDITIONS

There were no significant sampling or variations encountered during the test program, however one sampling anomaly occurred where the FTIR's data acquisition system failed to record data for 8 minutes from 13:05 to 13:13 during 100% Load, Run 2. Though CO_2 concentrations measured by the FTIR are used in emissions calculations, the loss of data does not significantly affect emission results as CO_2 concentrations were $\pm 0.05\%$ for the duration of the test program. To calculate VOC emissions over a 120 minute period, the FTIR measured an additional 8 minutes of data following the completion of the PM test run. Also, the third run of the 70% load condition PM test was extended by 5 minutes to a total of 125 minutes to ensure 100 dscf of sample was obtained.

5.4 PROCESS OR CONTROL EQUIPMENT UPSET CONDITIONS

The turbine and associated control equipment were operating under routine conditions and no upsets were encountered during testing.

5.5 AIR POLLUTION CONTROL DEVICE MAINTENANCE

No significant pollution control device maintenance occurred during the three months prior to the test. Optimization of the air pollution control equipment is a continuous process to ensure compliance with regulatory emission limits.

5.6 RE-TEST DISCUSSION

Based on the results of this test program, a re-test is not required

5.7 RESULTS OF AUDIT SAMPLES

Audit samples are not required for the reference methods utilized during this test program and are not available from USEPA Stationary Source Audit Sample Program providers. A list of QA/QC Procedures is listed below in Table 5-1.

Table 5-1 QA/QC Procedures

QA/QC Proced	ures			
QA/QC Activity	Purpose	Procedure	Frequency	Acceptance Criteria
M1: Sampling Location	Evaluates if the sampling location is suitable for sampling	Measure distance from ports to downstream and upstream flow disturbances	Pre-test	≥2 diameters downstream; ≥0.5 diameter upstream.
M1: Duct diameter/ dimensions	Verifies area of stack is accurately measured	Review as-built drawings and field measurement	Pre-test	Field measurement agreement with as-built drawings
M1: Cyclonic flow evaluation	Evaluate the sampling location for cyclonic flow	Measure null angles	Pre-test	≤20°
M2: Pitot tube calibration and standardization	Verifies construction and alignment of Pitot tube	Inspect Pitot tube, assign coefficient value	Pre-test and after each field use	Method 2 alignment and dimension requirements
M2: Pitot tube leak check	Verify leak free sampling systems	Apply minimum pressure of 3.0 inches of H ₂ O to Pitot tube	Pre-test and Post-test	± 0.01 in H ₂ O for 15 seconds at minimum 3.0 in H ₂ O velocity head
M4: Field balance calibration	Verify moisture measurement accuracy	Use Class 6 weight to check balance accuracy	Daily before use	The field balance must measure the weight within ±0.5 gram of the certified mass
M4: Impinger temperature	Ensures collection of condensed water	Maintain last impinger temperature ≤68°F	Throughout test	Last impinger temperature must be ≤68°F
M5: nozzle diameter measurements	Verify nozzle diameter used to calculate sample rate	Measure inner diameter across three cross-sectional chords	Pre-test	3 measurements agree within ±0.004 inch
M5: Apparatus Temperature	Prevents condensation within sample apparatus	Set probe & filter heat controllers to 248±25°F	Verify prior to and during each run	Apparatus temperature must be 248±25°F
M5: sample rate	Ensure representative sample collection	Calculate isokinetic sample rate	During and post-test	100±10% isokinetic rate
M5: Sample volume	Ensure minimum required sample volumes collected	Record pre- and post-test dry gas meter volume reading	Post test	PM: ≥100 dscf

Table 5-1 QA/QC Procedures

QA/QC Activity	Purpose	Procedure	Frequency	Acceptance Criteria
M5/202: Post- test leak check	Evaluate if system leaks biased the sample	Cap sample train; monitor DGM	Post-test	≤0.020 cfm
M5/202: post- test meter audit	Evaluates sample volume accuracy	DGM pre- and post- test; compare calibration factors (Y and Yga)	Pre-test Post-test	±5%
M5: Apparatus Temperature	Ensures purge of acid gases in glass probe liner and Teflon filter	Set probe & filter heat controllers to ≥248°F	Verify prior to and during each run	Apparatus temperature must be ≥223°F and ≤273°F
M202: impinger temperature	Ensure collection of condensate	Maintain CPM filter temperature below 85°F	Throughout test	CPM filter temperature must be ≥65°F and ≤85°F
M18: Analyzer calibration	Develop calibration curve, evaluates operation of analyzers	Calibration gases introduced directly into analyzers	Pre-test Post-test	pre- and post- test average response factors ±5% of mean value
M18: Recovery study	Verify the acceptability of the sampling technique for the target compound(s).	Average recovery from three spiked adsorption tubes; correct all field measurements based on the average recovery.	Field sample runs not validated without successful field recovery test.	Average recovery between 0.7 and 1.3.
M320: Sampling system leak check	Verify leak free sampling system	Cap sampling system, monitor flowrate	Pre-test	≤200 mL/min
M320: Analytical system leak check	Verify leak free analytical system	Cap analytical system, monitor pressure	Pre-test	≤4.0% of the FTIR system volume
M320: QA Spike	Evaluates operation of analyzer	Calibration gases introduced into sampling system at ≤10.0% of sampling rate	Pre-test Post-test	average spiked concentration 0.7 to 1.3 times the expected concentration

5.8 CALIBRATION SHEETS

Calibration sheets, including dry gas meter, gas protocol sheets, and analyzer quality control and assurance checks are presented in Appendix E.

5.9 SAMPLE CALCULATIONS

Sample calculations and formulas used to compute emissions data are presented in Appendix A.

5.10 FIELD DATA SHEETS

Field data sheets are presented in Appendix B.

5.11 LABORATORY QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

The method specific quality assurance and quality control procedures in each method employed during this test program were followed, without deviation. Refer to Appendix C for the laboratory data sheets.

5.11.1 QA/QC BLANKS

Reagent and media blanks were analyzed for the parameters of interest. The results of the blanks analysis are presented in the Table 5-3. Laboratory QA/QC and blank results data are contained in Appendix C.

Table 5-2 QA/QC Blanks

	an a	
Sample Identification	Result	Comment
Method 5 Acetone Blank	1.5 mg	Sample volume was 200 milliliters Acetone blank corrections were applied
Method 5 Filter Blank	0.0 mg	Reporting limit is 0.1 milligrams
Method 202 DI H ₂ O Blank	<0.5 mg	Sample weight was 200 grams Result is for inorganic condensable
Method 202 Acetone Blank	<1.0 mg	Sample weight was 160 grams Result is for organic condensable
Method 202 Hexane Blank	<1.0 mg	Sample weight was 150 grams Result is for organic condensable
Method 202 Field Train Recovery	2.4 mg inorganic	Maximum blank correction of 2.0 mg applied
Blank	<1.0 mg organic	to results

x

Consumers Energy

Table 1 - Unit 2B 70%					
Facility and Source Information	Units	Run 1	Run 2	Run 3	Average
Customer: Source:				erating Station 70% Load	
Nork Order:				70% Load	
Date:		12/11/2018	12/11/2018	12/11/2018	
oad:	MWg	122.8	122.6	122.8	122.7
Stack Diameter	inches	201.0	201.0	201.0	
Cross-sectional Area of Stack, A	ft ²	220.35	220.35	220.35	
Source Pollutant Test Data	Units	Run 1	Run 2	Run 3	Average
Barometric Pressure, P _{bar}	inches of Hg	29.25	29.25	29.40	29.30
Dry Gas Meter Calibration Factor, Y	dimensionless	0.999	0.999	0.999	0.999
Pitot Tube Coefficient, C _p Stack Static Pressure, P.,	dimensionless	0.84	0.84	0.84	0.84
Nozzle Diameter, Da	inches of H ₂ O	-1.00	-0.70 0.240	-1.00	-0.90
	inches			0.240	0.240
Run Starl Time Run Stop Time	hamm hamm	9:05	11:50 14:00	14:20	
Duration of Sample, 6	minutes	11:19	14:00	16:30 120	120
Dry Gas Meter Leak Rate, La	cfm	0.000	0,000	0.000	0.000
Dry Gas Meter Start Volume	ft ³	408,04	521.62	642,25	523.97
Dry Gas Meter Start Volume	ft3	521,00	636,88	760.01	639.30
verage Pressure Difference across the Orifice Meter, ΔH	inches of H ₂ O	2.87	3.09	3,06	3.01
werage Dry Gas Meter Temperature, Tm	۴F	69.5	75.8	78.4	74.6
verage Square Root Velocity Head, v∆p	vinches H ₂ O	1.0761	1.1115	1.1037	1.0971
Sack Gas Temperature, T _{s(abavg)}	۳۲	217.5	217.7	219.5	218.2
Source Molsture Data		Run 1	Run 2	Run 3	Average
olume of Water Vapor Condensed in Silica Gel, V _{ivsg(sk)}	scf	1.2	1,6	1.7	1.5
otal Volume of Water Vapor Condensed, V _{w(std)}	scf	8.659	9.187	8,968	8.938
olume of Gas Sample as Measured by the Dry Gas Meter, Vm	dcf	112,959	115,256	117.760	115.325
olume of Gas Sample Measured by the Dry Gas Meter corrected to STP, Vm(etd)	dscf	110.759	111.743	114.188	112.230
folume of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(ed)}$. Moisture Content of Stack Gas, B_{vs}	dscm % H ₂ O	3,137	3.165	3.234	3,178
	1/01120	7.25	7.60	7.28	7.38
Gas Analysis Data Carbon Dioxide, %CO2	%, dry	Run 1 4.2	Run 2 4.2	Run 3 4.2	Average 4.2
xygen, %O ₂	%, dry	13.4	13.4	13,5	4.2
lifrogen, %N	%, dry	82.4	82.4	82.3	82.4
ny Molecular Weight, M _d	lb/ib-mole	29.21	29.21	29.21	29.21
Vet Molecular Weight, Ms	lb/lb-mole	28.40	28.36	28,40	28.38
uel F-Factor, F _d :	dscf/mmBtu	8,710	8,710	8,710	8,710
Gas Volumetric Flow Rate Data		Run 1	Run 2	Run 3	Average
verage Stack Gas Velocity, v _s	ft/s	69.9	72.2	71.6	71.2
itack Gas Volumetric Flow Rate, Q	acim	923,878	954,716	946,575	941,723
tack Gas Standard Volumetric Flow Rate, Qs	scim	702,118	725,879	720,937	716,312
Stack Gas Dry Standard Volumetric Flow Rate, Q _{sd}	dscim	651,207	670,734	668,440	663,460
Percent of Isokinetic Sampling, I	%	99.5	97.4	99.9	98.9
Gas Concentrations and Emission Rates	,	Run 1	Run 2	Run 3	Average
lass of Filterable PM Collected, m _n	ing 	0.76	1.68	1.04	1.16
ilterable PM Concentration, ce	gr/dscf	0.00011	0.00023	0.00014	0.00016
illerable PM Mass Emission Rate, E	ib/hr	0.59	1.33	0.80	0.91
ilterable PM, lb/mmBtu, E ilterable PM, toy [Assumes 8,760 Hrs/Yr Operation]	Ib/mmBlu	0.0004	0.0008	0.0005	0.0006
inerabie Fivi, wy (Assumes 6,700 Fils/11 Operation)	ipy	2.6	5.8	3.5	4.0
hass of Organic CPM, ma	mg	1.0	1.4	1,9	1.4
ass of lorganic Condensable PM, m	mg	5.1	2,6	3.4	3.7
		0.1	210		4.1
ass of Total CPM in Field Train Recovery Blank Correction, mn	mg	2.0	2.0	2,0	2,0
lass of Total Condensable PM, moorn	mg	4.1	2.0	3,3	3,1
ondensable PM Concentration	gr/dscf	0.00057	0.00028	0.00045	0.00043
ondensable PM Mass Emission Rate	lb/hr	3.18	1.58	2.55	2,44
ondensable PM Mass Emission Rate	ib/mmBtu	0.0020	0.0010	0.0016	0.0015
ondensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation]	tpy	13.9	6.9	11.2	10.7
lass of Fillerable and Condensable PM (PM ₁₀)	mg	4.9	3.7	4.3	4.3
M ₁₀ Concentration	gr/dscf	0,00068	0,00051	0,00058	0.00059
	lb/hr	3.77	2.92	3,35	3.35
M ₁₀ Mass Emission Rate M ₁₀ Mass Emission Rate M ₁₀ Mass Emission Rate (Assumes 8,760 Hrs/Yr Op.)	lb/hr lb/mmBtu tpy	3.77 0,0023 16.5	2,92 0,0018 12.8	3,35 0.0021 14.7	3.35 0.0021 14.7

Consumers Energy

Table 2 - Unit 2B 70% L					A
Facility and Source Information	Units	Run 1	Run 2	Run 3	Average
Customer:				erating Station 70% Load	
Source:				10% LOau	
Date:		12/11/2018	12/11/2018	12/11/2018	ł
Load:	MWg	122,8	122.6	122.8	122.7
Stack Diameter	inches	201,0	201.0	201.0	
Cross-sectional Area of Stack, A	ft ²	220,35	220,35	220.35	
Source Pollutant Test Data	Units	Run 1	Run 2	Run 3	Average
Barometric Pressure, P _{bar}	inches of Hg	29.25	29.25	29.40	29,30
Dry Gas Meter Calibration Factor, Y	dimensionless	0.999	0.999	0.999	0.999
Pitot Tube Coefficient, Cp	dimensionless	0.84	0.84	0.84	0.84
Stack Static Pressure, Pg	inches of H ₂ O	-1,00	-0,70	-1.00	-0.90
Nozzle Diameter, D _n	inches	0.240	0,240	0.240	0.240
Run Start Time	hr:mm	9:05	11:50	14:20	
Run Stop Time	hr:mm	11:19	14:00	16:30	
Duration of Sample, 0	minutes	120	120	120	120
Dry Gas Meter Leak Rate, L _p	cfm	0.000	0.000	0.000	0.000
Dry Gas Meter Start Volume	ft ³	408.04	521.62	642.25	523.97
Dry Gas Meter Final Volume	ft ³	521.00	636.88	760.01	639.30
Average Pressure Difference across the Orifice Meter, ΔH	inches of H ₂ O	2.87	3.09	3.06	3.01
Average Dry Gas Meter Temperature, T _m	°F	69.5	75.8	78.4	74.6
Average Square Root Velocity Head, νΔp	Vinches H ₂ O	1.0761	1.1115	1.1037	1.0971
Stack Gas Temperature, T _{s(abavg)}	*	217.5	217.7	219.5	218.2
Source Moisture Data	· ·	Run 1	Run 2	Run 3	Average
Volume of Water Vapor Condensed in Silica Gel, V _{wsg(std)}	scf	1.2	1.6	1.7	1.5
Total Volume of Water Vapor Condensed, V _{w(std)}	scf	8.659	9.187	8.968	8,938
Volume of Gas Sample as Measured by the Dry Gas Meter, V_m Volume of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(sti)}$	dcf	112.959	115.256	117.760	115.325
Volume of Gas Sample Measured by the Dry Gas Meter corrected to STP, V _{m(std)} Volume of Gas Sample Measured by the Dry Gas Meter corrected to STP, V _{m(std)}	dscf	110,759	111.743	114.188	112.230
Moisture Content of Stack Gas, B _{ws}	dscm % H ₂ O	3.137	3.165	3.234	3.178
	10.120		Run 2		
Gas Analysis Data	%, dry	Run 1 4,2	4.2	Run 3 4.2	Average 4.2
Oxygen, %O ₂	%, dry	13.4	13.4	4.2	13.4
Nitrogen, %N Dry Molecular Weight, M _d	%, dry lb/lb-mole	82.4	82.4 29.21	82.3 29.21	82.4 29.21
Wet Molecular Weight, Me	lb/lb-mole	28.40	28.36	28.40	28.38
Fuel F-Factor, F _d :	dscf/mmBlu	8,710	8,710	8,710	8,710
Gas Volumetric Flow Rate Data	doominista	Run 1	Run 2	Run 3	Average
Average Stack Gas Velocity, vs	ft/s	69.9	72.2	71.6	71.2
Stack Gas Volumetric Flow Rate, Q	acím	923,878	954,716	946,575	941,723
Stack Gas Standard Volumetric Flow Rate, Q.	scfm	702,118	725,879	720,937	716,312
Stack Gas Dry Standard Volumetric Flow Rate, Q _{ed}	dscfm	651,207	670,734	668,440	663,460
Percent of Isokinetic Sampling, I	%	99.5	97,4	99.9	98,9
Gas Concentrations and Emission Rates		Run 1	Run 2	Run 3	Average
Formaldehyde Concentration	ppmvd	0.076	0.071	0.065	0.071
Formaldehyde Molecular Weight	g/mole	30.031	30.031	30.031	30.031
Formaldehyde lb/scf Coversion Factor	lb/scf	7.799E-08	7.799E-08	7.799E-08	7.799E-08
Formaldehyde Mass Emission Rate	lb/hr	0.23	0.22	0.20	0.22
Formaldehyde Mass Emission Rate	lb/mmBtu	0.0001	0.0001	0,0001	0.0001
Formaldehyde Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation]	tpy	1.0	1.0	0.9	1.0
Tomadenyde waas Emission Nate [Assumes 0,700 Fasth Operation]					
				1 11-	0
Acetylene Concentration	ppmvd	ND	ND	ND	
Acetylene Concentration	ppmvd ppmvd	ND ND	ND	ND ND	0
Acetylene Concentration Propane Concentration	ppmvd	ND	NÐ	ND	0
Acetylene Concentration Propane Concentration Butane Concentration	ppmvd ppmvd	ND ND	ND ND	ND ND	0 0
Acetylene Concentration Propane Concentration Butane Concentration Propylene Concentration	ppmvd ppmvd ppmvd	ND ND ND	ND ND ND	ND ND ND	0 0 0
Acetylene Concentration Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration	ppmvd ppmvd ppmvd ppmvd ppmvd	ND ND ND ND	ND ND ND ND	ND ND ND ND	0 0 0 0
Acetylene Concentration Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration Ethylene Concentration	ppmvd ppmvd ppmvd ppmvd ppmvd ppmvd	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	0 0 0 0
Acetylene Concentration Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration Ethylene Concentration	ppmvd ppmvd ppmvd ppmvd ppmvd ppmvd	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	0 0 0 0

Consumers Energy

Table 3 - Unit 2B 100% Facility and Source Information	Units	Run 1	Run 2	Run 3	Auora~~
	Units	Run 1		erating Station	Average
Customer:					
Source:				100% Load	
Work Order:		40/40/0040	1	0411	1
Dale:		12/12/2018	12/12/2018	12/12/2018	460.4
Load:	MWg	171.2	169.1	168.0	169.4
Stack Diameter Cross-sectional Area of Stack, A	ft ²	201.0	201.0 220.35	201.0 220.35	
Source Pollutant Test Data	Units	220.35 Run 1	Run 2	Run 3	Average
Barometric Pressure, Par	linches of Hg	29.10	29,10	29,05	29.08
	dimensionless	0.999	0.999	0,999	0.999
Dry Gas Meter Calibration Factor, Y Pitot Tube Coefficient, C _p	dimensionless	0.999	0.999	0,999	0,999
Stack Static Pressure, P _a	inches of H ₂ O	-1.00	-1.00	-1.00	-1.00
Nozzle Diameter, D _n	Inches	0.219	0.219	0,219	0,219
		8:30	11:00	13:25	0,210
Run Start Time	hrmm	10:39	13:09	15:33	
Run Stop Time	hamm	120	120	120	120
Duration of Sample, 8 Dry Gas Meter Leak Rate, L _e	minutes cfm	0.000	0.000	0,000	0,000
	ft ³	761.26	889.10	12.13	554.16
Dry Gas Meter Start Volume	п. ft ³				
Dry Gas Meter Final Volume Average Pressure Difference across the Onflice Meter, ΔH	inches of H ₂ O	888,16 3.48	1011.25 3.30	135.94 3.36	678.45 3.38
Average Dry Gas Meter Temperature, T _m	PF	73.2	81.3	80.8	78,4
Average Square Root Velocity Head, VAp	vinches H ₂ O	1,4353	1.3837	1.3957	1.4049
Slack Gas Temperature, T _{statava}	*h	229.1	227.9	227.8	228.3
Source Moisture Data		Run 1	Run 2	Run 3	Average
Journe of Water Vapor Condensed in Silica Gel, V _{wsg(std)}	scf	1.4	1.4	1.7	1.5
Fotal Volume of Water Vapor Condensed, V _{w(std)}	scf	9,630	9,175	9.185	9,330
/olume of Gas Sample as Measured by the Dry Gas Meter, Vm	dcf	126,905	122,150	123.810	124.288
follower of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(std)}$	dscf	123,128	116.688	118.189	119.335
follower of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(std)}$	dscm	3,487	3,305	3.347	3.380
Moisture Content of Stack Gas, B _{va}	% H ₂ O	7.25	7.29	7.21	7.25
Gas Analysis Data		Run 1	Run 2	Run 3	Average
Carbon Dioxide, %CO2	%, dry	4.0	4,1	4.1	4.1
Oxygen, %O ₂	%, dry	13,5	13.5	13.8	13.6
		_	82.4	82.1	82.3
Vilrogan, %N Dry Molecular Weight, Ma	%, dry lb/b-mole	82.5 29.18	82.4 29.20	29.21	29.19
Net Molecular Weight, Ma	lb/lb-mole	28.37	28,38	28.40	29.19
Fuel F-Factor, F _d :	dscf/mmBtu	8,710	28.38 8,710	8,710	8,710
	daebaimbid	Run 1	Run 2	Run 3	Average
Gas Volumetric Flow Rate Data	ft/s	94.3	90.8	91.6	Average 92.2
Stack Gas Volumetric Flow Rate, Q Stack Gas Standard Volumetric Flow Rate, Q	acfm	1,246,600	1,200,537	1,211,458	1,219,532
	scim	926,663	893,936	900,623	907,074
Stack Gas Dry Standard Volumetric Flow Rate, Q _{sd}	dscfm	859,442	828,768	835,680	841,297
Percent of Isokinetic Sampling, I	%	100.6	98,9	99.3	99.6
Gas Concentrations and Emission Rates	1	Run 1	Run 2	Run 3	Average
Mass of Filterable PM Collected, mn	mg	1.91	2.33	4.79	3.01
ilterable PM Concentration, cs	gr/dscf	0.00024	0.00031	0.00062	0.00039
Ilterable PM Mass Emission Rate, E	lb/hr	1.76	2.18	4.47	2.80
ilterable PM, Ib/mmBtu, E	lb/mmBtu	0.0008	0.0011	0.0023	0.0014
ilterable PM, tpy [Assumes 8,760 Hrs/Yr Operation]	lpy	7.7	9.6	19.6	12.3
Mass of Organic CPM, ma	mg	<1.0	1,6	2.2	1.6
lass of Inorganic Condensable PM, m	mg	2.7	2.7	2.6	2.7
Ass of Total CPM in Field Train Recovery Blank Correction, m _{th}	mg	2.0	2.0	2.0	2.0
lass of Total Condensable PM, m _{epm}	mg	1.7	2.3	2.8	2.3
Condensable PM Concentration	gr/dscf	0.00021	0.00030	0.00036	0.00029
Condensable PM Mass Emission Rate	lb/hr	1.57	2.16	2.61	2.11
	lb/mm8tu	0.0007	0.0011	0.0013	0.0011
		1 00	9.4	11.4	9.3
Condensable PM Mass Emission Rate	tpy	6.9			
Condensable PM Mass Emission Rate Condensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation]	tpy				
Condensable PM Mass Emission Rate Condensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation] Mass of Filterable and Condensable PM (PM ₁₀)	mg	3.6	4.6	7.6	5.3
Condensable PM Mass Emission Rate Condensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation] Aass of Filterable and Condensable PM (PM ₁₀) PM ₁₀ Concentration		3.6 0.00045	0.00061	0.00099	0.00068
Condensable PM Mass Emission Rate Condensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation] Mass of Filterable and Condensable PM (PM ₁₀) PM ₁₀ Concentration PM ₁₀ Mass Emission Rate	mg	3.6			
Condensable PM Mass Emission Rate Condensable PM Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation] Mass of Fitterable and Condensable PM (PM ₁₀) PM ₁₀ Concentration PM ₁₀ Mass Emission Rate PM ₁₀ Mass Emission Rate [Assumes 8,760 Hrs/Yr Op.]	mg gr/dscf	3.6 0.00045	0.00061	0.00099	0.00068

Consumers	Enerav
oonsumers	rucial à

Facility and Source Information	Units	Run 1	Run 2	Run 3	Average
Customer;			Zeeland Gen	erating Station	<u>.</u>
Source;			Unit 2B -	100% Load	******
Work Order:			650	0411	
Date:		12/12/2018	12/12/2018	12/12/2018	
Load:	MWg	171.2	169.1	168.0	169.4
Stack Diameter	inches	201.0	201.0	201.0	
Cross-sectional Area of Stack, A	_ft²	220,35	220.35	220.35	
Source Pollutant Test Data	Units	Run 1	Run 2	Run 3	Average
Barometric Pressure, P _{bar}	inches of Hg	29.10	29.10	29,05	29.08
Dry Gas Meter Calibration Factor, Y Pitot Tube Coefficient, Cp	dimensionless dimensionless	0.999	0,999 0,84	0,999	0.999
Stack Stalic Pressure, Pa	inches of H ₂ O	-1.00	-1.00	-1.00	-1.00
Nozzle Diameter, D _n	inches	0.219	0.219	0.219	0.219
Run Start Time	hr.mm	8:30	11:00	13:25	0.210
Run Stop Time	hrann	10:39	13:09	15:33	
Duration of Sample, 0	minutes	120	120	120	120
Dry Gas Meter Leak Rate, Lp	cfm	0.000	0.000	0.000	0.000
Dry Gas Meter Start Volume	ft ³	761.26	889.10	12.13	554.16
Dry Gas Meter Final Volume	ft ³	888,16	1011.25	135.94	678.45
Average Pressure Difference across the Orifice Meter, ΔH	inches of H ₂ O	3.48	3.30	3.36	3.38
Average Dry Gas Meter Temperature, T _m	۴	73.2	81.3	80.8	78.4
Average Square Root Velocity Head, v∆p	vinches H ₂ O	1.4353	1.3837	1.3957	1.4049
Stack Gas Temperature, T _{s(abavg)}	PF	229.1	227.9	227.8	228.3
Source Moisture Data		Run 1	Run 2	Run 3	Average
Volume of Water Vapor Condensed, Vwc(std)	scf	8.2	7.8	7.5	7,8
Volume of Water Vapor Condensed in Silica Gel, V _{wsg(std)}	scf	1.4	1.4	1.7	1.5
Total Volume of Water Vapor Condensed, V _{v(eld)} Volume of Gas Sample as Measured by the Dry Gas Meter, V _m	scf	9,630	9.175	9.185	9,330
Volume of Gas Sample Measured by the Dry Gas Meter, v_m Volume of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(skt)}$	dcf dscf	126.905	122.150 116.688	123.810 118.189	124.288 119.335
Volume of Gas Sample Measured by the Dry Gas Meter corrected to STP, $V_{m(str)}$	dscm	3.487	3.305	3.347	3.380
Moisture Content of Stack Gas, B _{vs}	% H ₂ O	7.25	7.29	7.21	7.25
Gas Analysis Data	-	Run 1	Run 2	Run 3	Average
Carbon Dioxide, %CO2	%, dry	4.0	4.1	4.1	4.1
Oxygen, %O ₂	%, dry	13.5	13.5	13,8	13.6
Nitrogen, %N	%, dry	82.5	82.4	82.1	82.3
Dry Molecular Weight, M _d	lb/lb-mole	29.18	29.20	29.21	29.19
Wet Molecular Weight, M _a	lb/lb-mole	28.37	28.38	28.40	28.38
Huel F-Factor, F _d .	dscf/mmBtu	8,710	8,710	8,710	8,710
Gas Volumetric Flow Rate Data		Run 1	Run 2	Run 3	Average
Average Stack Gas Velocity, v _e	ft/s	94.3	90,8	91.6	92,2
Stack Gas Volumetric Flow Rate, Q	acfm	1,246,600	1,200,537	1,211,458	1,219,532
Stack Gas Standard Volumetric Flow Rate, Q _s	scfm	926,663	893,936	900,623	907,074
Stack Gas Dry Standard Volumetric Flow Rate, Q _{sd}	dscfm	859,442	828,768	835,680	841,297
Percent of Isokinetic Sampling, I	%	100.6	98.9	99.3	99.6
Gas Concentrations and Emission Rates	· · · · · · ·	Run 1	Run 2	Run 3	Average
Formaldehyde Concentration	ppmvd	0.055	0.047	0,051	0,051
Formaldehyde Molecular Weight	g/mole	30.031	30.031	30,031	30.031
Formaldehyde Ib/scf Coversion Factor	lb/scf	7.799E-08	7.799E-08	7.799E-08	7.799E-08
Formaldehyde Mass Emission Rate	lb/hr	0.22	0.18	0.20	0,20
Formaldehyde Mass Emission Rate Formaldehyde Mass Emission Rate [Assumes 8,760 Hrs/Yr Operation]	lb/mmBtu Inv	0.0001	0.0001 0.8	0.0001	0.0001
	lpy	1,0	0,0	0.9	0,9
	ppmvd	ND	ND	ND	0
Acetwene Concentration	ppmvd	ND	ND	ND	0
	10.0.1.1.1.	ND	ND	ND	0
Propane Concentration	ppmyd			, .	
Propane Concentration Butane Concentration	ppmvd ppmvd			ND	0
Acetylene Concentration Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration	ppmvd ppmvd ppmvd	ND ND ND	ND ND	ND ND	0
Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration	ppmvd	ND	ND		
Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration Ethylene Concentration	ppmvd ppmvd	ND ND	ND ND	ND	0
Propane Concentration Butane Concentration Propylene Concentration	ppmvd ppmvd ppmvd	ND ND ND	ND ND ND	ND ND	0 0
Propane Concentration Butane Concentration Propylene Concentration Acetaldehyde Concentration Ethylene Concentration	ppmvd ppmvd ppmvd	ND ND ND	ND ND ND	ND ND	0