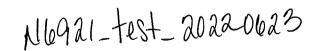


Testing Solutions for a Better World


RECEIVED

AUG 01 2022

AIR QUALITY DIVISION

EMISSION COMPLIANCE TEST FOR THE FUEL GAS HEATER, UNIT #FGH1 PREPARED FOR INDECK NILES, LLC AT THE INDECK NILES ENERGY CENTER NILES, MICHIGAN JUNE 23, 2022

Permit No: 75-16B Report Date: July 15, 2022

Corporate Headquarters 1600 W Tacoma Street Broken Arrow, Oklahoma 74012 (918) 307-8865 or (888) 461-8778

www.airhygiene.com

AIR HYGIENE, INC.

Remote Testing Offices Las Vegas, NV 89156 Ft. Worth, TX 76028 Humble, TX 77338 Shreveport, LA 71115 Miami, FL 33101 Pittsburgh, PA 15205

EMISSION COMPLIANCE TEST FOR THE FUEL GAS HEATER, UNIT #FGH1 PREPARED FOR INDECK NILES, LLC AT THE INDECK NILES ENERGY CENTER NILES, MICHIGAN JUNE 23, 2022

Prepared and Reviewed by:

Darin Grimes Sr. Testing Solutions Specialist

/ m ΙC

Cole McBride, QSTI Sr. Project Manager certify that this testing was conducted and this report was created in conformance with the requirements of ASTM D7036

Thomas K. Graham, PE, QSTI Director of AHU

(this page intentionally left blank)

.

CERTIFICATION OF INFORMATION

I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

IMA

Cole McBride, QSTI Sr. Project Manager Air Hygiene International, Inc.

July 4, 2022

Date

FACILITY CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attached documents and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

I am the responsible official with direct knowledge and overall responsibility for the information contained in this report.

Name

Title

Signature

Date

(this page intentionally left blank)

٩

.

Table of Contents

1.0		1
1.1	TEST PURPOSE AND OBJECTIVES	1
1.2	SUMMARY OF TEST PROGRAM	1
1.1	2.1 Participating Organizations	1
1.1	2.2 Industry	1
1.1	2.2 Industry 2.3 Air Permit Requirements	1
1.1	2.4 Plant Location	1
	2.5 Equipment Tested	1
	2.6 Emission Points	1
	2.7 Emission Parameters Measured	2
	2.8 Date of Emission Test	2
1.1	2.9 Federal Certifications	2
1.3		2
2.0	SUMMARY OF TEST RESULTS	2
3.0	SOURCE OPERATION	
3.1	PROCESS DESCRIPTION	3
3.2	SAMPLING LOCATION	3
4.0	SAMPLING AND ANALYTICAL PROCEDURES	3
4.1	TEST METHODS	3
4.2	INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS	4

APPENDICES

- Appendix A Test Results and Calculations
- Appendix B Emission Data Records
- Appendix C Calibration Gas Certifications
- Appendix D Quality Assurance and Quality Control Data
- Appendix E Fuel Analysis Records
- Appendix F Equipment Calibration Records

Emissions Compliance Test Fuel Gas Heater, Unit #FGH1 Indeck Niles, LLC Indeck Niles Energy Center Niles, Michigan June 23, 2022

1.0 INTRODUCTION

Air Hygiene International, Inc. (Air Hygiene) has completed the Emissions Compliance Test for particulate matter (PM) from the exhaust of the Fuel Gas Heater, Unit #FGH1 for Indeck Niles, LLC at the Indeck Niles Energy Center in Niles, Michigan. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on June 23, 2022.

1.1 TEST PURPOSE AND OBJECTIVES

The purpose of the test was to conduct an initial compliance emission test to document levels of selected pollutants at maximum load. The information will be used to confirm compliance with the operating permit issued by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). The specific objective was to determine the emission concentration of PM from the exhaust of Indeck Niles, LLC's Fuel Gas Heater, Unit #FGH1.

1.2 SUMMARY OF TEST PROGRAM

The following list details pertinent information related to this specific project:

- 1.2.1 Participating Organizations
 - Michigan Department of Environment, Great Lakes, and Energy (EGLE)
 - Indeck Niles, LLC
 - Kiewit Corporation
 - Air Hygiene
- 1.2.2 Industry
 - Electric Utility / Electric Services
- 1.2.3 Air Permit Requirements
 - Permit Number: 75-16B
- 1.2.4 Plant Location
 - Indeck Niles Energy Center in Niles, Michigan
 - GPS Coordinates [Latitude 41.85831, Longitude -86.22417]
 - Physical Address: 2200 Progressive Dr., Niles, Michigan 49120
 - Federal Registry System / Facility Registry Service (FRS) No. 110017413985
 - Source Classification Code (SCC) 20100201
- 1.2.5 Equipment Tested
 - Fuel Gas Heater, Unit #FGH1
- 1.2.6 Emission Points
 - Exhaust from the Fuel Gas Heater, Unit #FGH1
 - For O₂/CO₂ one sample point in the stack from the Fuel Gas Heater, Unit #FGH1, determined after conducting a stratification test
 - For all PM testing, 24 sampling points in the stack from the Fuel Gas Heater, Unit #FGH1

- 1.2.7 Emission Parameters Measured
 - PM
 - Flow
 - H₂O
 - CO₂
 - O₂
- 1.2.8 Date of Emission Test
 - June 23, 2022
- 1.2.9 Federal Certifications
 - Stack Testing Accreditation Council AETB Certificate No. 3796.02
 - International Standard ISO/IEC 17025:2005 Certificate No. 3796.01

1.3 KEY PERSONNEL

Indeck Niles, LLC:	Tom Krysiak (tkrysiak@indeckenergy.com)	716-225-6478
Kiewit Corporation:	Derek Goettemoeller (Derek.Goettemoeller@Kiewit.com)	913-905-9068
Air Hygiene:	Cole McBride (cmcbride@airhygiene.com)	918-307-8865
Air Hygiene:	Swanson Bierman	918-307-8865
Air Hygiene:	Colby Gniech	918-307-8865
Air Hygiene:	Harold Jones	918-307-8865
Air Hygiene:	Jason Hass	918-307-8865
Air Hygiene:	Trevor Thompson	918-307-8865
Air Hygiene:	Sean Barnes	918-307-8865

2.0 SUMMARY OF TEST RESULTS

Results from the sampling conducted on Indeck Niles, LLC's Fuel Gas Heater, Unit #FGH1 located at the Indeck Niles Energy Center on June 23, 2022 are summarized in the following table and relate only to the items tested.

The results of all measured pollutant emissions were below the required limits. All testing was performed without any real or apparent errors. All testing was conducted according to the approved testing protocol.

RESULTS					
Parameter	Max Load Emissions	Permit Limits			
Boiler Fuel Flow (SCFH)	2,769				
Heat Input (MMBtu/hr)	2.98				
Filterable PM (mg)	1.40				
Filterable PM (gr/dscf)	9.75E-04				
Filterable PM (lb/hr)	0.01				
Filterable PM (lb/MMBtu)	0.0019	0.002			

TABLE 2.1 SUMMARY OF FUEL GAS HEATER, UNIT #FGH1 RESULTS

3.0 SOURCE OPERATION

3.1 PROCESS DESCRIPTION

Indeck Niles, LLC owns and operates the Indeck Niles Energy Center located at 2200 Progressive Dr., in Niles, Michigan. The facility includes two combined-cycle natural gas fired combustion turbine generators (CTGs). The two CTGS are rated at 3,651 million British thermal unit per hour (MMBtu/hr) and are coupled with heat recovery steam generators (HRSG) in a two-on-one configuration with a steam turbine generator. Each HRSG is equipped with a natural gas-fired duct burner rated at 71 MMBtu/hr to provide heat for additional steam production. The HRSGs are not capable of operating independently from each CTG. Each CTG/HRSG is equipped with dry low NOx burners (DLNB), selective catalytic reduction (SCR), and an oxidation catalyst. In addition, two fuel gas heaters (FGHs) are located at the facility to support unit startup.

3.2 SAMPLING LOCATION

The FGH stacks are vertical, circular, and measure 1.94 feet (ft) (23.25 inches) in diameter at the test ports which are approximately 14 ft above grade level with an exit elevation of approximately 30 ft above grade level. The test ports are located approximately 9.17 ft (110 inches) [4.7 dia] downstream and approximately 16 ft (192 inches) [8.3 dia] upstream from the nearest disturbances. Air Hygiene has field verified the measurable dimensions. Non-field verified dimensions are provided by Indeck Niles, LLC. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test for oxides of nitrogen (NOx) and O₂. During the stratification test six points were traversed from each of the two ports. The probe was allowed to remain at a point for at least two times the system response time. For PM testing, an initial velocity traverse was performed across the stack from 24 total points to confirm the absence of cyclonic flow. All PM sampling occurred from the same 24 points by leaving the probe at each for an equal amount of time.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 TEST METHODS

The emission test on the Fuel Gas Heater, Unit #FGH1 at the Indeck Niles Energy Center was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on June 23, 2022.

Pollutant or Parameter	Sampling Method	Analysis Method	
Sample Point Location	EPA Method 1	Equal Area Method	
Stack Flow Rate	EPA Method 2	S-Type Pitot Tube	
Oxygen	EPA Method 3A	Paramagnetic Cell	
Carbon Dioxide	EPA Method 3A	Nondispersive Infrared Analyzer	

TABLE 4.1 SUMMARY OF SAMPLING METHODS

Pollutant or Parameter	Sampling Method	Analysis Method
Stack Moisture Content	EPA Method 4	Gravimetric Analysis
Particulate Matter	EPA Method 5	Front Half Filterables
Stack Flow Rate	EPA Method 19	Dry Oxygen F Factor
Fuel Content Analysis	ASTM D-1945	Fuel Gas Sample and Laboratory Analysis

4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 2, 3A, 4, 5, and 19.

Figure 4.1 depicts the sample system used for the real-time gas analyzer tests. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon® tubing, to a stainless-steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon® tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the real-time analyzers through rotameters that controlled the flow rate of the sample. Exhaust samples were routed to the wet based analyzer prior to gas conditioning.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in a climate controlled, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e., O₂ calibration gases).

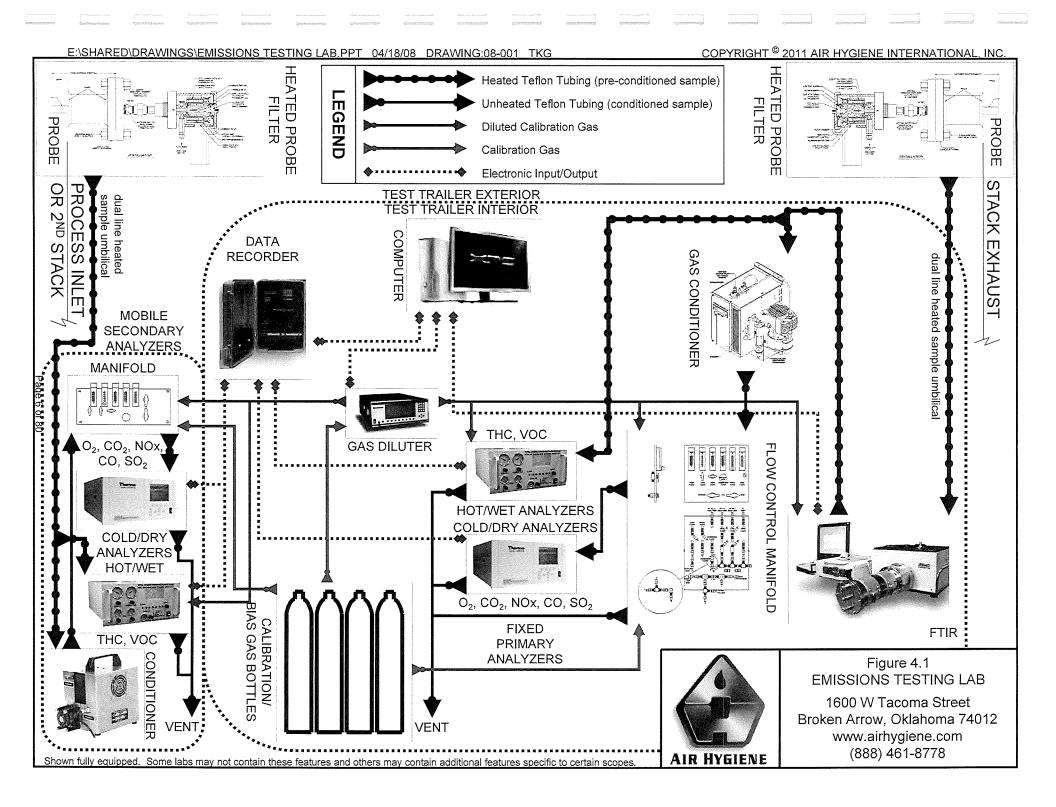

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds.

Figure 4.2 represents the sample system used for the PM tests. A heated stainless-steel probe with a glass liner and nozzle was inserted into the sample ports of the stack to extract gas measurements from the emission stream through a filter and glass impinger train. Flow rates are monitored with oil filled manometers and total sample volumes are measured with a dry gas meter.

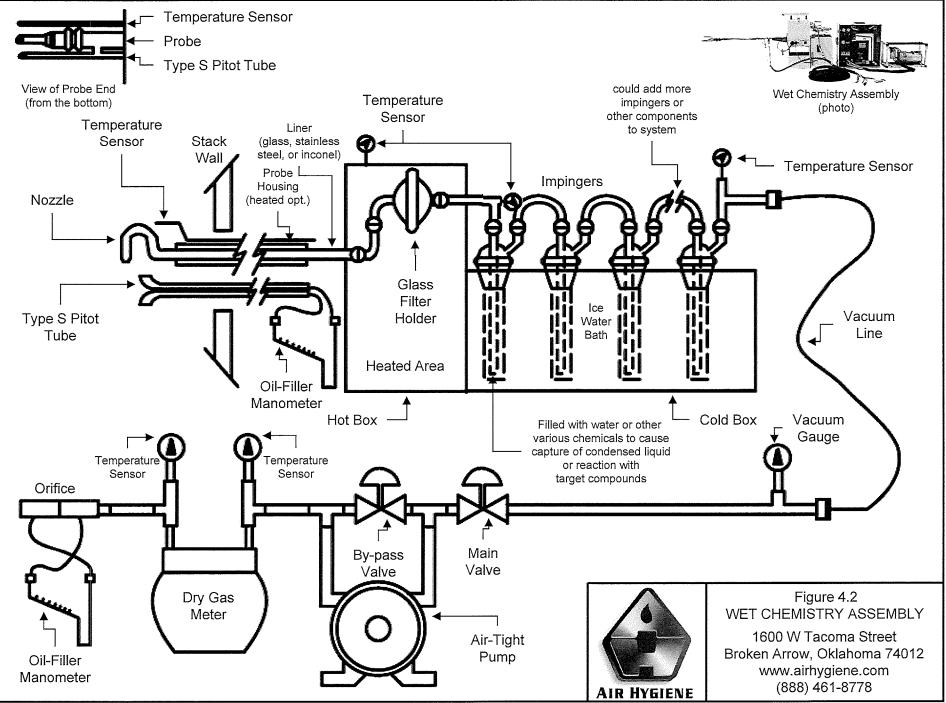

The stack gas analysis for O_2 and CO_2 concentrations was performed in accordance with procedures set forth in EPA Method 3A. The O_2 analyzer uses a paramagnetic cell detector and the CO_2 analyzer uses a continuous nondispersive infrared analyzer.

TABLE 4.2ANALYTICAL INSTRUMENTATION

Parameter	Manufacturer and Model	Range	Sensitivity	Detection Principle
CO ₂	SERVOMEX 1440	0-20%	0.1%	Nondispersive infrared
O ₂	SERVOMEX 1440	0-25%	0.1%	Paramagnetic cell, inherently linear.

COPYRIGHT © 2011 AIR HYGIENE INTERNATIONAL, INC.

APPENDIX A

TEST RESULTS AND CALCULATIONS

TABLE A.1: EMISSIONS TESTING SCHEDULE

Unit	Load	Component	Run	Date	Start	Stop	Time Sync	Duration
FGH1	Max	Cyc. Flow Chk.	FGH1_PM-V1	06/23/22	7:50:00	8:10:00	DAHS	0:20:00
FGH1	Max	PM	FGH1_PM-1	06/23/22	9:50:00	10:59:00	DAHS	1:09:00
FGH1	Max	PM	FGH1_PM-2	06/23/22	11:18:00	12:27:00	DAHS	1:09:00
FGH1	Max	PM	FGH1_PM-3	06/23/22	12:41:00	13:48:00	DAHS	1:07:00

4

,