General Motors Lansing Delta Township Assembly Plant

Environmental Testing Program

September/October 2016

Transfer Efficiency

RECEIVED

NOV 1.8 2016

Prepared By:

JLB Industries, LLC Rochester Hills, MI 48306 (248) 904-7027 enviro@jlbindustries.com DEQ

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name General Motors LLC Lansing Delta Township	County Eaton
Source Address 8175 Millett Highway	City Lansing
AQD Source ID (SRN) N6950 ROP No. MI-ROP-N6950- 2014	ROP Section No. 1
Please check the appropriate box(es):	
Annual Compliance Certification (Pursuant to Rule 213(4)(c))	
 Reporting period (provide inclusive dates): From To 1. During the entire reporting period, this source was in compliance with ALL term term and condition of which is identified and included by this reference. The method (s) specified in the ROP. 2. During the entire reporting period this source was in compliance with all term and condition of which is identified and included by this reference. The method source was in compliance with all term and condition of which is identified and included by this reference. 	s and conditions contained in the ROP, each d(s) used to determine compliance is/are the s and conditions contained in the ROP, each
deviation report(s). The method used to determine compliance for each term and unless otherwise indicated and described on the enclosed deviation report(s).	condition is the method specified in the ROP,
Semi-Annual (or More Frequent) Report Certification (Pursuant to Rule 213(3)	c))
Reporting period (provide inclusive dates): From To 1. During the entire reporting period, ALL monitoring and associated recordkeepin deviations from these requirements or any other terms or conditions occurred.	g requirements in the ROP were met and no
2. During the entire reporting period, all monitoring and associated recordkeeping deviations from these requirements or any other terms or conditions occurred, EXC enclosed deviation report(s).	requirements in the ROP were met and no EPT for the deviations identified on the
Other Report Certification	
Reporting period (provide inclusive dates): From To Additional monitoring reports or other applicable documents required by the ROP are September/October 2016 Topcoat Transfer Efficiency Test Repor	attached as described:
I certify that, based on information and belief formed after reasonable inquiry, the state supporting enclosures are true, accurate and complete	ements and information in this report and the

Marcos A. Purty	Plant Manager	517-721-3001
Name of Responsible Official (print or type)	Title	Phone Number
A.S.A.		11/15/2016
Signature of Responsible Official		/ Date

* Photocopy this form as needed.

1.0 <u>Executive Summary</u>

JLB Industries, LLC completed a compliance environmental testing program during the week of September 26 and on October 13, 2016 at the General Motors LLC Lansing Delta Township Assembly Plant, located in Lansing, Michigan. The testing served as a compliance demonstration for the existing Topcoat (FG-Topcoat) coating operations. Solids transfer efficiency (TE) values were determined for the Solid Basecoat, Metallic Basecoat and Clearcoat processes. These processes are currently operating under Air Quality Permit #MI-ROP-N6950-2014.

The testing program was conducted in accordance with all applicable procedures contained in the U.S. Environmental Protection Agency document <u>Protocol for Determining the</u> <u>Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck</u> <u>Topcoat Operations</u> as referenced in 40 CFR, Part 63. The resultant test values will be used to calculate emissions.

Transfer Efficiency values were derived for the Chevrolet Traverse, which is representative of the current production at the facility. Personnel from the paint shop, GM environmental staff and JLB Industries, LLC conducted the testing. These groups worked together at each stage of testing to ensure that the results were representative of production conditions.

JLB Industries used highly accurate weighing systems to determine the vehicle weights before and after coating application. Calibrated volumetric flow meters, located on each applicator, were used to measure paint usage. Bob Byrnes of the *Michigan Department of Environmental Quality* was present for portions of the testing program.

Material samples were collected from the paint circulation tanks directly after vehicle processing. Determination of percent solids by weight and density was performed by BASF at their laboratory facilities in Southfield, Michigan.

Table 1 – Testing Results Summary

	Transfer
Material	Efficiency (%)
White Solid Basecoat	70%
Silver Metallic Basecoat	78%
Clearcoat	66%

2.0 Introduction

JLB Industries, LLC (JLBI) was contracted by the General Motors Delta Township Assembly Plant (GM) to perform an environmental testing program on the existing Topcoat coating operations. Solids transfer efficiency (TE) values were determined for the Solid Basecoat, Metallic Basecoat and Clearcoat processes. This testing was conducted using the Chevrolet Traverse model during the week of September 26 and on October 13, 2016.

3.0 Sampling and Analytical Procedures

Transfer Efficiency testing was conducted in the South Topcoat Spraybooth, where Summit White Solid Basecoat, Switchblade Silver Metallic Basecoat and Clearcoat coatings were applied by robotic applicators. Applicator and environmental conditions were monitored to ensure that the testing accurately reflected production conditions. Measured parameters included: vehicle weight gain, coating material usage, coating material analysis (percent solids by weight and density), applicator settings, film build and oven heat settings.

A total of five vehicle bodies were used for each tested process. Three vehicles were processed as normal production vehicles, while two were dedicated as no-paint test controls in conjunction with each test. Testing was performed with production vehicles.

An on-line vehicle weigh station (VWS) was constructed to measure the weight of the test vehicles before and after each coating process. Test vehicles were routed to the VWS after each process. Test vehicles were lifted free from their carriers by two lift-table mounted scale bases. Ultra-high molecular weight (UHMW) plastic blocks were strategically placed on the scale bases to lift the vehicle at the center of gravity locations. The UHMW blocks minimized friction loading from the vehicles on scale bases.

Vehicle weights were measured three times and recorded. All test vehicles were weighed with production fixtures (door hooks and hood props) installed. The vehicle weigh station scales were calibrated using Class F calibration weights conforming to the National Bureau of Standards handbook 105-1. A one-pound avoirdupois, Class F stainless steel weight was added periodically during pre- and post-process weighing to verify scale linearity.

Coating thickness was measured on a representative vehicle to verify paint film-build was within the production specification. The data was taken with an Elcometer gauge.

Robotic coating material usage was monitored via volumetric flow measurement devices located on each applicator. A verification of each applicator was performed before testing to ensure accurate usage measurement.

Switchblade Silver Metallic Basecoat

Primed test vehicles were weighed and processed through the South Topcoat Spraybooth and coated with Switchblade Silver Metallic Basecoat. The test sequence was:

- 1. Test Vehicle ID TE 1
- 2. Test Vehicle ID TE 2
- 3. Test Vehicle ID TE 3
- 4. Test Vehicle ID TE 4 (No-paint)
- 5. Test Vehicle ID TE 5 (No-paint)

<u>Clearcoat</u>

The test vehicles were weighed and processed through the South Topcoat Spraybooth and coated with Switchblade Silver Metallic Basecoat and Clearcoat. The Clearcoat transfer efficiency value was determined mathematically using the results from the Basecoat-only and Basecoat/Clearcoat composite tests. The test sequence was:

- 1. Test Vehicle ID TE 1
- 2. Test Vehicle ID TE 2
- 3. Test Vehicle ID TE 3
- 4. Test Vehicle ID TE 4 (No-paint) **Not included in test results due to mis-routing.
- 5. Test Vehicle ID TE 5 (No-paint)

The test vehicles were routed through the Topcoat Oven and allowed to cool before a final weight measurement was taken at the VWS.

White Solid Basecoat

Primed test vehicles were weighed and processed through the South Topcoat Spraybooth and coated with White Solid Basecoat. The test sequence was:

- 1. Test Vehicle ID TE 8
- 2. Test Vehicle ID TE 9
- 3. Test Vehicle ID TE 10
- 4. Test Vehicle ID TE 6 (No-paint)
- 5. Test Vehicle ID TE 7 (No-paint)

The test vehicles were routed through the Topcoat Oven and allowed to cool before a final weight measurement was taken at the VWS.

4.0 <u>Test Equipment and Calibration</u>

Vehicle Weigh Station

A dedicated vehicle weigh station (VWS) equipped with two 1,000 lb. capacity scale bases was used to obtain pre- and post-process vehicle weights. The VWS is accurate to better than 0.05 pounds.

The scales were calibrated as directed by the operating instruction manual. Scales were powered up and exercised by placing 250 pounds of Class F calibration weights on each scale platform. Then, the VWS was calibrated with 600 pounds of Class F calibration weights. VWS linearity was checked using a one-pound, Class F stainless steel calibration weight. The two-pound weight was also added to each test vehicle during pre- and postprocess weighing to verify scale linearity.

Material Usage

Coating material usage was monitored by volumetric flow measurement devices located on each applicator. A verification of each applicator was performed by GM prior to testing to ensure accurate usage data. Paint usage was measured at each applicator in a graduated cylinder and compared to the expected volume. The Paint Metering Verification Record is included in Section 7 of this report.

A sample of each material was taken after each test and analyzed by BASF at their laboratory facilities in Southfield, Michigan. As referenced in EPA Method 24, ASTM Method D-2369 was used to determine paint solids and ASTM Method D-1475 was used to determine paint density. These values were used in calculating the paint solids sprayed and the transfer efficiency for each process.

RECEIVED

NOV 1 8 2016

AIR QUALITY DIV.

5.0 Discussion of Test Results

The measured vehicle weight gains for each tested coating fell within ten percent of the average weight gain as specified by the protocol. The weight change associated with the no-paint control vehicles was used in calculating transfer efficiency values. During the clearcoat test, one of the control vehicles was not routed back to the vehicle weigh station and was unable to be post-weighed. The white basecoat test, originally scheduled for September 29, was postponed until October 13 due to an equipment breakdown in the tested spraybooth.

6.0 <u>Calculation of Results</u>

Table 2 - White Solid Basecoat Transfer Efficiency SummaryGM Lansing Delta Township Transfer Efficiency TestSeptember/October 2016

Vehicle ID	Vehicle Weight Gain (lb.)	Avg. Vehicle Weight Gain (lb.)	Avg. Paint Sprayed (gal)	Coating Density (lb/gal)	Weight Solids Fraction	Avg. Solids Sprayed	Transfer Efficiency (%)
Calculation:	(W2-W1)	(avg VWG)-SWL	(avg PS)	(Method 24)	(Method 24)	(BPS*CD*WSF)	(BVWG/BSS)
TE 8	1.90	1.83	0.686	9.906	0.3868	2.63	70%
TE 9	1.75						
TE 10	1.89						
Control Vehicle	SWL						
TE 6	0.00						
TE 7	0.02	40 classical and a second s					

Table 3 - Silver Metallic Basecoat Transfer Efficiency SummaryGM Lansing Delta Township Transfer Efficiency TestSeptember/October 2016

	Vehicle	Avg. Vehicle		Coating	Weight		
	Weight Gain	Weight Gain	Avg. Paint	Density	Solids	Avg. Solids	Transfer
Vehicle ID	(Ib.)	(lb.)	Sprayed (gal)	(Ib/gal)	Fraction	Sprayed	Efficiency (%)
Variable:	VWG	BVWG	BPS	CD	WSF	BSS	TE
Calculation:	(W2-W1)	(avg VWG)-SWL	(avg PS)	(Method 24)	(Method 24)	(BPS*CD*WSF)	(BVWG/BSS)
TE 1	0.75	0.91	0.550	8.750	0.2449	1.18	78%
TE 2	0.75						
TE 3	0.67						
Control Vehicle	SWL						
TE 4	-0.18						
TE 5	-0.20						

Table 4 - Clearcoat Transfer Efficiency SummaryGM Lansing Delta Township Transfer Efficiency TestSeptember/October 2016

Vehicle ID Variable: Calculation:	Vehicle Weight Gain (lb.) VWG (W2-W1)	Avg. Vehicle Weight Gain (lb.) BVWG (avg VWG)-SWL	Avg. Paint Sprayed (gal) BPS (avg PS)	Coating Density (lb/gal) CD (Method 24)	Weight Solids Fraction WSF (Method 24)	Avg. Solids Sprayed (lb.) BSS (BPS*CD*WSF)	Composite Transfer Efficiency (%) TE (BVWG/BSS)
TE 1	3.23	3.35	0.805	8.706	0.5237	3.67	69%
TE 2	3.22		0.550	8.750	0.2449	1.18	
TE 3	3.32						
Control Vehicle	SWL					4.85	
TE 5	-0.09					<u></u>	~
TE 4	**						

Note: The total solids sprayed (4.85) is the sum of the Clearcoat solids sprayed (3.67) and the Basecoat solids sprayed (1.18). ** Control vehicle TE 4 was mis-routed after process and no post-weight was taken.

<u>Clearcoat Transfer Efficiency Calculation</u>

Composite TE	$TE_{Composite} = TE_{BC} * SR_{BC} + TE_{CC} * SR_{CC}$	
BC Solid Ratio	$SR_{BC} = BSS_{BC}/BSS_{Total}$	0.243
CC Solid Ratio	$SR_{CC} = BSS_{CC}/BSS_{Total}$	0.757
BC TE	TE _{BC}	78%
Composite TE	TE _{Composite}	69%
Clearcoat TE	$TE_{CC} = [TE_{Composite} - (TE_{BC} * SR_{BC})]/SR_{CC}$	66%

Table 5 - Applicator Parameter SummaryGM Lansing Delta Township Transfer Efficiency TestSeptember/October 2016

Operation	Manufacturer	Applicator	Fluid Tip	Air Cap	Gun Voltage	RPM	Gun-to-Target Distance	Remarks
BC Interior	Fanuc	VersaBell 3	1.3 mm	N/A	40 kV	40,000	7-9 inches	
BC Exterior	Fanuc	VersaBell 3	1.3 mm	N/A	80 kV	50,000	10 inches	
CC Interior	Durr	EcoBell 2	1.3 mm	N/A	60 kV	45,000	7-9 inches	
CC Exterior	Durr	EcoBell 1	0.9 v/1.1 h	N/A	40-60 kV	55,000	10 inches	

Line Speed: 14.7 ft/min

Paint Metering Data Record White Solid Basecoat GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

ni da organizatione d		Vehicle ID/Paint Sprayed (cc)					
Process	Applicator	399	639	413			
Zone 1	P1	217	217	217			
	P2	217	217	217			
	P3						
	P4						
	P5	212	212	212			
	P6	212	212	212			
Zone 2	2P1	232	232	232			
	2P2	226	226	226			
	2P3	211	211	211			
	2P4	211	211	211			
Zone 3	3P1						
	3P2						
	3P3	233	233	233			
	3P4						
	3P5	196	196	196			
15 100400	3P6	233	233	233			
	3P7						
	3P8	195	196	196			
	Total (cc):	2595	2596	2596			
	Total (gal):	0.686	0.686	0.686			

Avg. Paint Sprayed (gal): 0.686

Paint Metering Data Record Silver Metallic Basecoat GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

		Vehicle ID/Paint Sprayed (cc)					
Process	Applicator	436	447	629			
Zone 1	P1						
	P2						
50 marco 000 marco 100	P3	173	173	173			
	P4	175	175	175			
	P5	203	203	203			
	P6	203	203	203			
Zone 2	2P1	186	186	186			
	2P2	180	180	180			
2000-0400 de uno	2P3	150	150	150			
	2P4	149	150	150			
Zone 3	3P1						
	3P2						
	3P3	188	188	188			
	3P4						
	3P5	143	143	143			
	3P6	188	188	188			
	3P7						
	3P8	142	143	143			
	Total (cc):	2080	2082	2082			
	Total (gal):	0.550	0.550	0.550			

Avg. Paint Sprayed (gal): 0.550

Paint Metering Data Record Clearcoat GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

		Vehicle ID/Paint Sprayed (cc)					
Process	Applicator	629	436	447			
Interior	CR3	233	233	233			
	CR4	240	240	240			
	CR7	256	257	256			
	CR8	246	246	246			
Exterior	1.1	103	103	104			
	2.1	86	85	86			
	1.2	162	162	163			
	2.2	150	150	150			
	1.3	139	139	140			
	2.3	154	154	154			
	3.1	237	237	237			
	3.2	250	250	251			
	3.3	248	249	248			
	3.4	259	259	259			
Sanda San	1.4	125	125	125			
	2.4	142	142	142			
	1.5						
10777000000000000000000000000000000000	2.5	15	14	15			
	Total (cc):	3045	3045	3049			
	Total (gal):	0.804	0.804	0.806			

Avg. Paint Sprayed (gal): 0.805

BOOTH: COL	Color Color NORTH OR: 545	SECOA	SOUTH	FL(DW RA	TE AUDI 2/31 10	Т 6
Notes:	1 Beakering Time 2 ALL Application 3 Only Robot(s) I	e MUST be Set for 30 s Parameters MUST be been Beakered MUST b	econds; Set Fill Cycle for 650 Set Initially to ZERO, be Enabled; ALL Other Robots I	cc's. Nust be l	Disabled.	· ,	
	4 Follow Proper I 6 Check the Box Contact Tech Sup	ock-out Procedures Be if ANY Flow Rate Beak port for Corrective Actio	efore Have Access to the Booth ered(Volume Measured) is Fou ins,	to Do Bo	eakering, a Deviation Greater	Than +/- 10% to the Vo	olume Requested,
24	Volume Requested	Actual Volume Measured 77 S		P	Volume Requested	Actual Volume Measured 75	

		*
	300	150
	Volume Requested	Actual Volume Measured
P4	150	75
	300	150
· ·	Volume	Actual Volume
	Requested	Measured
କ	150	75
	300	150
	Volume	Actual Volume
	Requested	Measured
2P;	150	72.
	300	150
	Volume	Actual Volume
_	Requested	Measured
2P4	150	75
	500	150
	Volume	Actual Volume
	Requested	Measured
ЗР	150	95
	300	145
	Volume	Actual Volume
ശ	Requested	Measured
3PI	150	15
	300	46
	Volume	Actual Volume
	Requested	Measured
ЗР	150	75
:	300	150
	150-	
	306	· · · · ·

	Volume Requested	Actual Volume Measured	
à	150	75	
	300	150	
	Volume	Actual Volume	`د
Б	150	70	
	300	150	
	Volume	Actual Volume	
5	Requested	Measured	
ᅀ	150	75	
	300	150	
_	Volume Requested	Actual Volume Measured	
2P	150	75	
	300	150	
	Volume Requested	Actual Volume Measured	
2P.	150	75	
	300	150	
	Volume	Actual Volume	٢
<u>r</u>	150		60]
	200		
	Volume Requested	Actual Volume Measured	
323	150	x C	
	300	148	
6	Volume Requested	Actual Volume Measured	
39	150	20 mil ex	í)
	300	149	
	Volume	Actual Volume	
4	requested		
°	222		
	200		

BOOTH:	NORTH	SOUTH		ļ	DATE:	<u>8/</u>	31/16_
Notes;	1 Beakering 2 ALL Applica 3 Only Bell(s) Disabled 4 ALL Bells N Booth to Do Be 5:- ONLY MAII ALLOW BEAK 6 Check the Boxif +/- 10% to the Volum	Time MUST be S ation Parameters) been Beakered MUST be Locked eakering NAIR AND MCP ERING PROCE NY Flow Rate Beakers & Requested, Contact 1	Set for MUS MUS Out E POW SS. Matvolum Fech Sur	30 se T be 5 T be 5 Sefore /ER M	conds. Set Initially Enable; AL Personel IUST REM IVST REM red) is Found. Corrective Acti	/ to ZE L Othe Have / IAIN U with a De ions.	RO. T Bells Must b Access to the NLQCKED TO Vation Greater Than
2.1	Volume Requested	Actual Volume Measured		1.4	Voluit Reques	ne steđ	Actual Volume Measured 75
2.2	Volume Requested / 57 200	Actual Volume Measured 75		1.2	300 Volun Reques	ne sted	Actual Volume Measured
23	Volume Requested /SO 300	Actual Volume Measured 75 7415		1.3	Volun Reques	në steđ	Actual Volume Measured
2.4	Volume Requested 750 350	Actual Volume Measured 75 ./46		1,4	Volun Reques	ne sted	Actual Volume Measured 75 /40
2.5	Volume Requested / 50 3.00	Actual Volume Measured 75		1.5	Volum Reques	ne sted	Actual Volume Measured
33	Volume Requested 150 300	Actual Volume Measured		3.1	Volum Reques	ne ited	Actual Volume Measured
3.4	Volume Requested	Actual Volume Measured 80		3.2	Volum Reques	ie ted	Actual Volume Measured

~

16

Vehicle Weigh Station Data Record White Solid Basecoat GM Lansing Delta Township Transfer Efficiency Test, October 13, 2016

Test Veh	vicle 1	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	399	1309.44	1311.34
VIN	TE 8	1309.47	1311.34
		1309.42	1311.36
On	e-Pound Linearity Check:	1310.43	1312.34
	Average Vehicle Weight:	1309.44	1311.35
	V	ehicle Weight Gain:	1.90

Test Veh	iicle 2	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	639	1309.65	1311.43
VIN	TE 9	1309.67	1311.41
		1309.67	1311.41
On	e-Pound Linearity Check:	1310.67	1312.41
	Average Vehicle Weight:	1309.66	1311.42
	V	ehicle Weight Gain:	1.75

Test Veh	ticle 3	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	413	1310.70	1312.62
VIN	TE 10	1310.73	1312.58
		1310.74	1312.63
On	e-Pound Linearity Check:	1311.73	1313.63
	Average Vehicle Weight:	1310.72	1312.61
	Ve	chicle Weight Gain:	1.89

Vehicle Weigh Station Data Record Solid Basecoat Control Vehicle GM Lansing Delta Township Transfer Efficiency Test, October 13, 2016

Control	Vehicle	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	415	1309.50	1309.54
VIN	TE 6	1309.54	1309.53
		1309.54	1309.52
On	e-Pound Linearity Check:	1310,54	1310.52
	Average Vehicle Weight:	1309.53	1309.53
	V	ehicle Weight Gain:	0.00

Control	Vehicle	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	585	1309.26	1309.28
VIN	TE 7	1309.32	1309.34
		1309.29	1309.32
On	e-Pound Linearity Check:	1310.29	1310.32
	Average Vehicle Weight:	1309.29	1309.31
	Va	ehicle Weight Gain:	0.02

RECEIVED

NOV 1 8 2016

Vehicle Weigh Station Data Record Silver Metallic Basecoat

AIR QUALITY DIV.

GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

Test Vel	nicle 1	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	436	1308.79	1309.51
VIN	TE 1	1308.80	1309.58
		1308.80	1309.55
On	e-Pound Linearity Check:	1309.80	1310.56
	Average Vehicle Weight:	1308.80	1309.55
	Ve	chicle Weight Gain:	0.75

Test Veh	iicle 2	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	447	1307.82	1308.59
VIN	TE 2	1307.87	1308.60
		1307.88	1308.62
On	e-Pound Linearity Check:	1308.87	1309.62
	Average Vehicle Weight:	1307.86	1308.60
	V	ehicle Weight Gain:	0.75

Test Vel	vicle 3	Pre-Weight (lb.) <i>W1</i>	Post-Weight (lb.) W2
Carrier	629	1307.08	1307.72
VIN	TE 3	1307.05	1307.76
	Ī	1307.09	1307.74
On	e-Pound Linearity Check:	1308.07	1308.74
	Average Vehicle Weight:	1307.07	1307.74
	Ve	chicle Weight Gain:	0.67

Vehicle Weigh Station Data Record Metallic Basecoat Control Vehicle GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

Control	Vehicle	Pre-Weight (lb.) <i>W1</i>	Post-Weight (lb.) W2
Carrier	380	1309.43	1309.24
VIN	TE 4	1309.47	1309.28
		1309.49	1309.32
On	e-Pound Linearity Check:	1310.49	1310.31
	Average Vehicle Weight:	1309.46	1309.28
	Vé	chicle Weight Gain:	-0.18

Control V	vehicle	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	637	1307.74	1307.59
VIN	TE 5	1307.82	1307.60
		1307.81	1307.57
One	-Pound Linearity Check:	1308.82	1308.58
Average Vehicle Weight:		1307.79	1307.59
	V	ehicle Weight Gain:	-0.20

Vehicle Weigh Station Data Record Clearcoat

GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

Test Vehicle 1		Pre-Weight (lb.) <i>W1</i>	Post-Weight (lb.) W2	
Carrier	436	1309.51	1312.73	
VIN	TE 1	1309.58	1312.80	
		1309.55	1312.79	
One-Pound Linearity Check:		1310.56	1313.79	
Average Vehicle Weight:		1309.55	1312.77	
Vehicle Weight Gain: 3.23				

Test Veh	icle 2	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	447	1308.59	1311.79
VIN	TE 2	1308.60	1311.85
		1308.62	1311.84
On	e-Pound Linearity Check:	1309.62	1312.83
Average Vehicle Weight:		1308.60	1311.83
	V	ehicle Weight Gain:	3.22

Test Veh	uicle 3	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	629	1307.72	1311.07
VIN	TE 3	1307.76	1311.08
		1307.74	1311.04
On	e-Pound Linearity Check:	1308.74	1312.04
Average Vehicle Weight:		1307.74	1311.06
	Va	ehicle Weight Gain:	3.32

Vehicle Weigh Station Data Record Clearcoat Control Vehicle GM Lansing Delta Township Transfer Efficiency Test, September 26-29, 2016

Control	Vehicle	Pre-Weight (lb.) W1	Post-Weight (lb.) W2
Carrier	637	1307.59	1307.47
VIN	TE 5	1307.60	1307.51
		1307.57	1307.51
On	e-Pound Linearity Check:	1308.58	1308.51
Average Vehicle Weight:		1307.59	1307.50
	V	ehicle Weight Gain:	-0.09

(

Paint Analytical Data GM Lansing Delta Township Transfer Efficiency Test, September 26-29 and October 13, 2016

Paint samples were taken from the circulation system each test day and sent for analysis by USEPA Method 24 to BASF laboratory. BASF Corporation, 26701 Telegraph Rd. Southfield, MI, 48033, USA

Sample Code	Name	Density	%NV	% Solvent	% Water	VOC (Method 24)
E211AW628A	Switchblade Silver	8.750	24.49	12.94	62.57	1.13
E54WW310A	Summit White	9.906	38.68	15.17	46.15	1.50
R10CG062L	UreGloss CW	8.706	52.37	47.63		4.14