EMISSION TEST REPORT FOR VOLATILE ORGANIC COMPOUNDS (VOC), ACETALDEHYDE AND FORMALDEHYDE ON THE YEAST RAISED BREAD BAKING LINE AT THE ROSKAM BAKING COMPANY FACILITY LOCATED IN KENTWOOD, MICHIGAN

Prepared for:

ENVIRONMENTAL PARTNERS, INC. 305 HOOVER BOULEVARD, SUITE 200 HOLLAND, MICHIGAN 49423

Prepared by:

STACK TEST GROUP, INC. 1500 BOYCE MEMORIAL DRIVE OTTAWA, IL 61350

APRIL 24, 2019 STACK TEST GROUP PROJECT NO. 19-3154

Report Prepared By:

Bill J. Byczynski President

Emissions Solu Ś Dliance

RECEIVED

JUN 07 2019 AIR QUALITY DIVISION

TABLE OF CONTENTS

				Page #	
1.0	Execu	tive Sum	nmary	1	
2.0	Introdu	uction		1	
3.0	Sampl 3.1	Exhau 3.1.1 3.1.2 3.1.3	Analytical Procedures st Gas Parameters Traverse and Sampling Points Velocity Traverse Gas Composition Moisture Content	1 1 1 2 2	
	3.2	3.2.2	Total) Sampling Method and Procedures Sample Duration and Frequency Calibration	2 2 2 2	
	3.3	Acetale 3.3.1 3.3.2 3.3.3	Sample Duration and Frequency	2 2 2 2	
4.0	Discus	sion of F Table 4	Results 4.1 –Yeast Raised Bread Baking Line ⁻	2 Test Results	4
APPENDIX A			EXAMPLE CALCULATIONS		
APPENDIX B			FIELD DATA SHEETS		
APPENDIX C			FIELD PARAMETER SHEETS		
APPENDIX D			FTIR REPORT		
APPENDIX E			CALIBRATION DATA		
APPENDIX F			PROCESS OPERATING DATA		
APPENDIX G			CALIBRATION GAS CERTIFICATIO	N SHEETS	
APPENDIX H			RAW TOTAL VOC DATALOGGER D	ATA	

1.0 EXECUTIVE SUMMARY

On April 24, 2019, the Stack Test Group, Inc. performed volatile organic compound (VOC), acetaldehyde and formaldehyde emission testing at the Roskam Baking Company facility located in Kentwood, Michigan. Testing was conducted on the Yeast Raised Bread Baking Line. Three tests were conducted on the oven exhaust stack. Presented below are the average results of these tests.

Yeast Raised Bread Baking Line:

VOC Emission Factor:	0.54 Pounds per Ton of Baked Bread
VOC Emission Rate:	2.44 Pounds per Hour as Propane
Acetaldehyde Emission Factor:	0.09 Pounds per Ton of Baked Bread
Acetaldehyde Emission Rate:	0.42 Pounds per Hour
Formaldehyde Emission Factor:	0.02 Pounds per Ton of Baked Bread
Formaldehyde Emission Rate:	0.09 Pounds per Hour

2.0 <u>INTRODUCTION</u>

On April 24, 2019, the Stack Test Group, Inc. performed volatile organic compound (VOC), acetaldehyde and formaldehyde emission testing at the Roskam Baking Company facility located in Kentwood, Michigan.

Testing for total VOC's, acetaldehyde and formaldehyde was conducted on the oven exhaust stack associated with the Yeast Raised Bread Baking Line. The purpose of this testing was to determine the concentrations and emissions rates of the above-mentioned parameters in order to develop an emission factor.

Testing was conducted while Roskam Baking Company personnel were baking Rothbury Bread on the Yeast Raised Bread Baking Line at the maximum routine production rate of 66 cuts per minute and the corresponding oven at normal conditions. Rothbury Bread is the main product baked on the Bread Line, and it has the highest yeast content, and the second highest yeast action time of the breads baked on the Bread Line.

Testing was supervised by Mr. Bill J. Byczynski, of the Stack Test Group, Inc. and coordinated by Mr. David Sikkenga of Roskam, and Mr. Mark Horne, P.E. of Environmental Partners, Inc. Testing was witnessed by Mr. Tom Gasloli and Mr. Christopher Robinson of the Michigan Department of Environmental Quality (MDEQ). FTIR testing was conducted by Mr. Phil Kauppi of Prism Analytical.

All testing followed the guidelines of U.S. EPA Reference Methods 1 through 4, 25A, and 320. This report contains a summary of results for the above-mentioned tests and all the supporting field, process, and computer-generated data.

3.0 <u>SAMPLING AND ANALYTICAL PROCEDURES</u>

3.1 Exhaust Gas Parameters

3.1.1 Traverse and Sampling Points

The number of velocity traverse and sample measurement points for each stack was determined using EPA Method 1.

Velocity and sample measurements were taken at each of 16 points, 8 points across each of the two ports set at 90° to each other on the oven exhaust stack. The test ports were located greater than 2.0 diameters downstream and greater than 0.5 diameters upstream of the nearest flow disturbances.

3.1.2 Velocity Traverse

Velocity measurements were performed during each emission test in accordance with EPA Method 2. An "S" type Pitot Tube with an attached type "K" thermocouple was used to conduct the velocity traverse.

3.1.2 Velocity Traverse

Velocity measurements were performed during each emission test in accordance with EPA Method 2. An "S" type Pitot Tube with an attached type "K" thermocouple was used to conduct the velocity traverse.

3.1.3 Gas Composition

Gas composition for oxygen, carbon dioxide, and nitrogen was determined employing EPA Method 3. An integrated gas sample was collected during each emission test. Gas analysis was conducted using a calibrated Servomex Model 1440C oxygen/carbon dioxide analyzer.

3.1.4 Moisture Content

The Exhaust stack gas moisture content was determined by using EPA Method 320. The procedure for EPA Method 320 can be found in sec 3.5

3.2 Volatile Organic Compound (Total VOC/Destruction Efficiency)

3.2.1 Sample Collection

Testing for total VOC on the oven exhaust stack was performed using U.S. EPA Reference Method 25A. A J.U.M. Model 3-300 Flame Ionization Detectors (FID) was used to determine the emission concentrations. A sample was transported through a heated Teflon line from the exhaust stack to the FID which analyzed the sample continuously. The output signal from the FID was then recorded at one-minute averages throughout the test. Copies of this data may be found in Appendix H.

At the beginning of the test series, the analyzer was calibrated and then checked for calibration error by introducing zero, low-range, mid-range and high-range calibration gases through the sampling system. Before and after each individual test run, a system drift was performed by introducing a zero and mid-range propane calibration gas to the outlet of the probe. Calibration gases used were U.S. EPA Protocol 1 certified.

3.2.2 Sample Duration and Frequency

The Method 25A train sample was collected in triplicate with each test lasting 60 minutes in duration.

3.2.3 Calibrations

All sampling equipment was calibrated per the procedures outlined in EPA Reference Method 25A. Copies of the FID calibrations are included in Appendix E.

3.3 Volatile Organic Compound by FTIR (Speciated VOC)

3.3.1 Sample Collection

Acetaldehyde and formaldehyde emissions were determined using U.S. EPA Method 320. The complete FTIR report is included in Appendix D. Mr. Phil Kauppi of Prism Analytical was on site to perform the 320 testing.

3.3.2 Sample Duration and Frequency

The samples were collected in triplicate with each test lasting approximately sixty minutes in duration and conducted simultaneously with the total VOC testing.

3.3.3 Calibration

The FTIR was calibrated according to the procedures outlined in Method 320. The calibrations along with the calibration gas certifications are included in Appendix D.

4.0 <u>TEST RESULTS</u>

Presented in this section are the results of this test series. Test results are reported in Table 4.1. Table 4.1 reports the stack gas conditions for the oven exhaust associated with the yeast raised

bread baking line including stack gas temperature, percent carbon dioxide and oxygen, percent moisture, molecular weight of the stack gas dry and wet, velocity in feet per second (fps), and flow rate in actual cubic feet per minute (acfm), standard cubic feet per minute (scfm), and dry standard cubic feet per minute (dscfm).

Table 4.1 also presents the total VOC, acetaldehyde and formaldehyde results for the oven exhaust. Total VOC, acetaldehyde and formaldehyde results are present in terms of parts per million (ppm), pounds per standard cubic feet (lb/scf), pounds per hour (lb/hr) and pounds per ton of baked bread.

Copies of the calculations used to determine these emission rates may be found in Appendix A. Copies of the field data sheets are presented in Appendix B. The Method 320 FTIR test report is included in Appendix D. Copies of equipment calibrations are presented in Appendix E.

Table 4.1

VOC Test Results Roskam Baking Company Kentwood, Michigan 04/24/19

Yeast Raised Bread Baking Line Exhaust Stack

Test No: Start Time: Finish Time:	<u>T1</u> 08:55 AM 09:55 AM	<u>T2</u> 10:50 AM 11:57 AM	<u>T3</u> 12:25 PM 01:25 PM	<u>Avg.</u>
Stack Gas Temperature, degrees F:	360.3	362.1	363.3	361.9
% Carbon Dioxide:	5.4	5.0	5.5	5.3
% Oxygen:	15.4	16.0	15.4	15.6
% Moisture:	21.60	19.20	22.40	21.07
Molecular Weight dry, lb/lb-Mole:	29.49	29.44	29.49	29.47
Molecular Weight wet, Ib/Ib-Mole:	27.01	27.24	26.92	27.06
Molecular Weight wet, ib/ib-Mole.	27.01	21.24	20.02	21.00
Velocity and Flow Results:				
Average Stack Gas Velocity FPS:	10.66	12.08	12.59	11.78
Stack Gas Flow Rate, ACFM:	838	949	990	926
Stack Gas Flow Rate, SCFM:	525	594	618	579
Stack Gas Flow Rate, DSCF/HR:	24,709	28,795	28,780	27,428
Stack Gas Flow Rate, DSCFM:	412	480	480	457
·				
VOC Results:				
PPMvw as Propane:	762.0	630.2	653.0	681.7
LBS/SCF:	7.67E-05	6.42E-05	7.01E-05	7.04E-05
LBS/HR:	2.42	2.29	2.60	2.44
Pounds per Ton of Bread Baked:	0.54	0.53	0.56	0.54
Acetaldehyde Results:				
PPMvw as Acetaldehyde:	97.3	106.9	115.2	106.5
LBS/SCF:	1.11E-05	1.22E-05	1.32E-05	1.22E-05
LBS/HR:	0.35	0.43	0.49	0.42
Pounds per Ton of Bread Baked:	0.08	0.10	0.10	0.09
Formaldehyde Results:	34.5	31.8	33.3	33.2
PPMvw as Formaldehyde: LBS/SCF:	34.5 2.69E-06	2.48E-06	2.60E-06	33.∠ 2.59E-06
LBS/SCF: LBS/HR:	2.69E-06 0.08	2.48E-06 0.09	2.60E-06 0.10	2.59E-06 0.09
	0.08	0.09	0.10	0.09
Pounds per Ton of Bread Baked:	0.02	0.02	0.02	0.02

APPENDIX A

SAMPLE CALCULATIONS

Roskam Baking Company Grand Rapids, Michigan

SAMPLE CALCULATIONS

The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$= (0.04707)(V_{lc})$$

Where:

Vic	total volume of liquid collected in impingers and silica gel (ml)
V _{wstd}	volume of water collected at standard conditions (ft ³)
0.04707	conversion factor (ft ³ /ml)

2. Volume of gas metered, standard conditions (dscf)

V_{mstd}

$$=\frac{(17.64)(V_{m})(P_{bar}+\frac{\Delta H}{13.6})(Y_{d})}{(460+T_{m})}$$

Pbar	barometric pressure (in. Hg)
Tm	average dry gas meter temperature (°F)
Vm	volume of gas sample through the dry gas meter at meter conditions (ft ³)
Vmstd	volume of gas sample through the dry gas meter at standard conditions (ft ³)
Yd	gas meter correction factor (dimensionless)
⊠H	average pressure drop across meter box orifice (in. H ₂ O)
17.64	conversion factor (°R/in. Hg)
13.6	conversion factor (in. H ₂ O/in. Hg)
460	°F to °R conversion constant

SAMPLE CALCULATIONS (CONTINUED)

3. Volume of gas metered, standard conditions (dscm)

 $\left(\frac{P_g}{13.6}\right)$

$$=\frac{\left(V_{mstd(ft)}\right)}{35.35}$$

Where:

Vmstd(ft)	volume of gas sample through the dry gas meter at standard conditions (ft ³)
Vmstd(m)	volume of gas sample through the dry gas meter at standard conditions (m^3)
35.35	conversion factor (ft ³ to m ³)
13.6	conversion factor (in. H ₂ O/in. Hg)

4. Sample gas pressure (in. Hg)

$$= P_{bar} +$$

Where:

 P_s

P _{bar}	barometric pressure (in. Hg)
Pg	sample gas static pressure (in. H ₂ O)
Ps	absolute sample gas pressure (in. Hg)
13.6	conversion factor (in. $H_2O/in. Hg$)

5. Actual vapor pressure (in. Hg)¹

 $= P_s$

 P_{v}

Where:

1010.	
Pv	vapor pressure, actual (in. Hg)
Ps	absolute sample gas pressure (in. Hg)

6. Moisture content (%)

$$B_{wo} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}}$$

B _{wo}	proportion of water vapor in the gas stream by volume (%)
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions
	(ft ³)
V _{wstd}	volume of water collected at standard conditions (ft ³)

 $^{^1}$ For effluent gas temperatures over 212°F, $P_{\rm v}$ is assumed to be equal to $P_{\rm s}.$

SAMPLE CALCULATIONS (CONTINUED)

7. Saturated moisture content (%)

 $=\frac{\left(P_{\nu}\right)}{\left(P_{\nu}\right)}$

Where:

Bws	proportion of water vapor in the gas stream by volume at saturated
	conditions (%)
Ps	absolute sample gas pressure (in. Hg)
. 3	
Pv	vapor pressure, actual (in. Hg)

Whichever moisture value is smaller is used for B_{wo} in the following calculations.

8. Molecular weight of dry gas stream (lb/lb·mole)

$$M_{d}$$

- 14	(CO_2)	(O_2)	$CO+N_2 \frac{\left(CO+N_2\right)}{\left(100\right)}$
= 1/1	$co_2 (100)^+$	$M_{o_2} \overline{(100)} + M_0$	(100) (100)

Where:

nere.	
Md	dry molecular weight of sample gas (lb/lb·mole)
Mco ₂	molecular weight of carbon dioxide (lb/lb·mole)
Mo ₂	molecular weight of oxygen (lb/lb·mole)
$M_{C0}+N_2$	molecular weight of carbon monoxide and nitrogen (lb/lb·mole)
CO ₂	proportion of carbon dioxide in the gas stream by volume (%)
O ₂	proportion of oxygen in the gas stream by volume (%)
CO+N ₂	proportion of carbon monoxide and nitrogen in the gas stream by volume (%)
100	conversion factor (%)

9. Molecular weight of sample gas (lb/lb·mole)

$$M_{s} = (M_{d})(1 - B_{wo}) + (M_{H_{2}O})(B_{wo})$$

Bwo	proportion of water vapor in the gas stream by volume
Md	dry molecular weight of sample gas (lb/lb·mole)
Мн ₂ 0	molecular weight of water (lb/lb·mole)
Ms	molecular weight of sample gas, wet basis (lb/lb·mole)

Roskam Baking Company Grand Rapids, Michigan

SAMPLE CALCULATIONS (CONTINUED)

$$= \left(K_{P}\right)\left(C_{P}\right)\left(\overline{\sqrt{\Delta P}}\right)\left(\sqrt{\frac{\left(\overline{T_{s}}+460\right)}{\left(M_{s}\right)\left(P_{s}\right)}}\right)$$

Where:

 V_s

Kp	velocity pressure coefficient (dimensionless)
Cp	pitot tube constant
Ms	molecular weight of sample gas, wet basis (lb/lb·mole)
Ps	absolute sample gas pressure (in. Hg)
Ts	average sample gas temperature (°F)
Vs	sample gas velocity (ft/sec)
$\sqrt{\Delta P}$	average square roots of velocity heads of sample gas (in. H_2O)
460	°F to °R conversion constant

11. Total flow of sample gas (acfm)

$$Q_a = (60)(A_s)(V_s)$$

Where:

As	cross sectional area of sampling location (ft ²)
Qa	volumetric flow rate at actual conditions (acfm)
Vs	sample gas velocity (ft/sec)
60	conversion factor (sec/min)

$$Q_{std}$$

$$=\frac{(Q_a)(P_s)(17.64)(1-B_{wo})}{(\overline{T_s}+460)}$$

Bwo	proportion of water vapor in the gas stream by volume
Ps	absolute sample gas pressure (in. Hg)
Qa	volumetric flow rate at actual conditions (acfm)
Qstd	volumetric flow rate at standard conditions, dry basis (dscfm)
Ts	average sample gas temperature (°F)
17.64	conversion factor (°R/in. Hg)
460	°F to °R conversion constant

Roskam Baking Company Grand Rapids, Michigan

SAMPLE CALCULATIONS (CONTINUED)

13. VOC concentration (lb/scf)

E_{1b / scf}

 $=\frac{(ppm)(MW)}{(385.3\times10^{6})}$

Where:

emission rate
measured concentration in the gas stream (ppm _v)
molecular weight of NMP (99.13)
conversion factor

14. VOC emission (lb/hr)

 $E_{lb/hr} = (lb/scf)(60)(scfm)$

Elb/hr	emission rate
Elb/scf	concentration
SCFM	flow rate
60 _{min/hr}	conversion factor