File Man P0423

October 31, 2013

Mr. Iranna Konanahalli Senior Environmental Engineer Air Quality Division MICHIGAN DEPT. OF ENVIRONMENTAL QUALITY Southeast Michigan District Office 27700 Donald Ct. Warren, MI 48092-2793

Subject: Response to Violation Notice dated October 24, 2013 Sterling Performance, Inc.; SRN P0423

Dear Mr. Konanahalli:

Dear Mr. Konanahalli: V N (Oct 24, 2013) ResponseSterling Performance, Inc. (Sterling) has prepared this correspondence in response to a letter

Violation Notice dated October 24, 2013 issued by the Michigan Department of Environmental Quality, Air Quality Division (MDEQ-AQD).

The MDEO-AOD Violation Notice specifies that Sterling failed to obtain a Renewable Operating Permit (ROP) and failed to submit an administratively complete ROP application in a timely manner according to the schedule stated in Rules 336.1210 (4 and 5).

The Violation Notice requests that Sterling provide an explanation of the causes of the violation and a summary of corrective actions to have (or will be) implemented to correct the violation and prevent reoccurrence.

Fuel Use and Air Pollutant Emission Rates

Sterling operates a single engine dynamometer for testing high-performance marine engines using three different types of fuel. The facility has maintained fuel use and fuel purchase records and has calculated annual air pollutant emissions based on the recorded fuel use data and default emission factors. The MDEQ-AQD has requested that Sterling provide fuel use data for the most recent five-year period.

Attachment I provides annual fuel use data and emission calculations for year-to-date 2013 and the previous four (4) calendar years (2009-2012).

Attachments II and III provide fuel use data and fuel purchase records for year-to-date 2013 and the previous four (4) calendar years (2009-2012).

Based on the fuel use data and calculations presented in the Attachment I tables, Sterling has emitted a maximum of 69.1 tons of carbon monoxide (CO) per year and less 2.0 tons per year for all other regulated air pollutants.

For an engine testing facility it is neither feasible nor realistic that its dynamometer test cell would operate continuously. A typical marine engine test is approximately 3 hours in duration and Sterling runs a maximum of 100 test periods per year. In between these test periods Sterling performs many other physical inspections and evaluations for the engines (the dynamometer testing is not the only function in the engine evaluation process). The emissions that occurred in calendar year 2011 (69.1 tons/yr CO), represent our approximate maximum emission rate under a realistic operating and business scenario.

Causes of the Violation

Our calculated annual emissions have not exceeded 100 tons per year for any regulated air pollutant. Based on conversations with the MDEQ-AQD and other air quality professionals, we have learned that the regulatory agency evaluates a facility's permitting requirement based on its 'potential to emit', which in general, is defined as its calculated worst-case emissions for continuous operation of the emission source.

Prior to the February 7, 2013 MDEQ-AQD inspection, we were unaware of the State's air permitting system and unaware of a requirement that would classify the Sterling facility as a major source of air emissions (based on continuous operation of our dynamometer test cell), which would require the facility to obtain a major source air permit under Rule 210. Had Sterling been aware of these permitting requirements, the company would have certainly obtained a Synthetic Minor Air Permit to limit its potential to emit to below major source levels since we do not anticipate that we would ever require greater than 100 tons per year of air pollutant emissions to operate our business. Sterling realized no economic benefit in operating its facility without an air permit; the failure to obtain a Synthetic Minor Air Permit was due solely to our lack of knowledge relative to the air permitting program.

Corrective Action Schedule

Upon becoming aware of the permitting requirements for the facility, Sterling promptly submitted an application to the regulatory agency to obtain a Synthetic Minor Permit to Install that would correct the permitting deficiency and limit the facility's potential to emit. The permit application was sent to the MDEQ-AQD on March 13, 2013, which was 34 days following the MDEQ-AQD inspection on February 7. Additionally, at the request of the MDEQ-AQD, a Michigan Air Emissions Reporting System (MAERS) filing was completed on April 4, 2013 to report calendar year 2012 emissions.

The requested Synthetic Minor Permit to Install was issued to Sterling on July 17, 2013. We are operating the facility in compliance with the issued permit. If the facility were to expand or need to modify its process in the future, we are now aware of the air permitting requirements and will apply for permit modifications as appropriate.

Mr. Iranna Konanahalli MDEQ Air Quality Division October 31, 2013 Page 3

If you have any questions or require additional information please contact us at (248) 684-5040.

Sincerely,

STERLING PERFORMANCE, INC.

Jul

Mike D'Anniballe President

ATTACHMENT I

FUEL USAGE AND EMISSION CALCULATIONS

Table 1. 2009 Annual Emissions from Sterling Performance, Inc.

Annual Throughput:	825 gallons spark ignited 110 Octane Leaded Fuel
Annual Throughput:	495 gallons spark ignited E-85 Unleaded Fuel
Annual Throughput:	26,151 gallons spark ignited Regular Unleaded Fuel

Regulated Air Pollutants ¹												
CO	NO _X	SO ₂	PM ₁₀	VOC	Lead							
3,940	102	5.31	15.26	148	9.06							
3,251	84	4	13	122	7							
3,940	102	5.31	6.20	148	0.0							
1,950	50	3	3	73	0							
3,940	102	5.31	6.20	148	0.0							
103,033	2,667	139	162	3,870	0							
54.1	1.4	0.1	0.1	2.0	0.004							
	3,940 3,251 3,940 1,950 3,940 103,033	3,940 102 3,251 84 3,940 102 1,950 50 3,940 102 103,033 2,667	CO NO _x SO ₂ $3,940$ 102 5.31 $3,251$ 84 4 $3,940$ 102 5.31 $1,950$ 50 3 $3,940$ 102 5.31 $1,950$ 50 3 $3,940$ 102 5.31 $103,033$ $2,667$ 139	CO NO _X SO ₂ PM_{10} 3,940 102 5.31 15.26 3,251 84 4 13 3,940 102 5.31 6.20 1,950 50 3 3 3,940 102 5.31 6.20 1,950 50 3 3 3,940 102 5.31 6.20 103,033 2,667 139 162	CO NOx SO2 PM_{10} VOC 3,940 102 5.31 15.26 148 3,251 84 4 13 122 3,940 102 5.31 6.20 148 1,950 50 3 3 73 3,940 102 5.31 6.20 148 1,950 50 3 3 73 3,940 102 5.31 6.20 148 103,033 2,667 139 162 3,870							

Table 2. 2010 Annual Emissions from Sterling Performance, Inc.

Annual Throughput:	825 gallons spark ignited 110 Octane Leaded Fuel
Annual Throughput:	5,785 gallons spark ignited E-85 Unleaded Fuel
Annual Throughput:	14,325 gallons spark ignited Regular Unleaded Fuel

			Regulated A	ir Pollutants ¹		
Activity Code	CO	NO _X	SO2	PM ₁₀	VOC	Lead
110 Octane Leaded Fuel SCC 2-04-004-01						
Emission Factors (lb./1000 gal.)	3,940	102	5.31	15.26	148	9.06
Annual Emissions ² (lbs./yr.)	3,251	84	4	13	122	7
E-85 Unleaded Fuel SCC 2-04-004-01						
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0
Annual Emissions ² (lbs./yr.)	22,793	590	31	36	856	0
Regular Unleaded Fuel SCC 2-04-004-01						
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0
Annual Emissions ² (lbs./yr.)	56,441	1,461	76	89	2,120	0
Subtotal Emissions (TPY)	41.2	1.1	0.1	0.1	1.5	0.004
1. MAERS emission factors	CYZ	2010				

Table 3. 2011 Annual Emissions from Sterling Performance, Inc.

Annual Throughput:	935 gallons spark ignited 110 Octane Leaded Fuel
Annual Throughput:	15,530 gallons spark ignited E-85 Unleaded Fuel
Annual Throughput:	18,620 gallons spark ignited Regular Unleaded Fuel

	Regulated Air Pollutants ¹												
Activity Code	CO	NO _X	SO ₂	PM ₁₀	VOC	Lead							
110 Octane Leaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	15.26	148	9.06							
Annual Emissions ² (lbs./yr.)	3,684	95	5	14	138	8							
E-85 Unleaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0							
Annual Emissions ² (lbs./yr.)	61,188	1,584	82	96	2,298	0							
Regular Unleaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0							
Annual Emissions ² (lbs./yr.)	73,363	1,899	99	115	2,756	0							
Subtotal Emissions (TPY)	69.1	1.8	0.1	0.1	2.6	0.004							

^{1.} MAERS emission factors

CY2011

Table 4. 2012 Annual Emissions from Sterling Performance, Inc.

Annual Throughput:	605 gallons spark ignited 110 Octane Leaded Fuel
Annual Throughput:	4,150 gallons spark ignited E-85 Unleaded Fuel
Annual Throughput:	14,125 gallons spark ignited Regular Unleaded Fuel

	Regulated Air Pollutants ¹												
Activity Code	CO	NO _X	SO ₂	PM ₁₆	VOC	Lead							
110 Octane Leaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	15.26	148	9.06							
Annual Emissions ² (lbs./yr.)	2,384	62	3	9	90	5							
E-85 Unleaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0							
Annual Emissions ² (lbs./yr.)	16,351	423	22	26	614	0							
Regular Unleaded Fuel SCC 2-04-004-01													
Emission Factors (lb./1000 gal.)	3,940	102	5.31	6.20	148	0.0							
Annual Emissions ² (lbs./yr.)	55,653	1,441	75	88	2,091	0							
Subtotal Emissions (TPY)	37.2	1.0	0.1	0.1	1.4	0.003							
1. MAERS emission factors	CYZ	2012	14455										

Table 5. 2013 Annual Emissions from Sterling Performance, Inc.

Annual Throughput:	880 gallons spark ignited 110 Octane Leaded Fuel
Annual Throughput:	2,030 gallons spark ignited E-85 Unleaded Fuel
Annual Throughput:	13,615 gallons spark ignited Regular Unleaded Fuel

NO _x SO 102 5.31 90 5 102 5.31	1 15.26 13	VOC 148 130	Leac 9.06 8
90 5	13	130	8
90 5	13	130	8
			-
102 5.31	1 6 10	149	0.0
102 5.31	1 6 30	149	0.0
102 5.31	1 600	1/9	0.0
	1 0.20	140	0.0
207 11	13	300	0
102 5.31	i 6.20	148	0.0
,389 72	84	2,015	0
0.8 0.0	0,1	1.2	0,004
[102 5.3 ,389 72	102 5.31 6.20 ,389 72 84	102 5.31 6.20 148 ,389 72 84 2,015

ATTACHMENT II

RAW FUEL USAGE DATA

	Indolene EEE	110	220	110	011	220																		077	
	87 Gas	899.9	892.5	900	688	892	006	1.068	006	006	865.2	890	894.1	890.4	006	7.797	2106	906	106	006	900.5	901.9	006	19605.5	
7		385																						1210	
CORRIGAN	SUNDCO	220	110	011	110	275																		825 825	
HALTERMANN	THER IL EEE																								
		ų	53	165	110	110	165	ង	220	ង														066	
	Unicaded REGULAR FUEL GRADE ETHANOL Brazilian Ethanol	330																						330	
	SULAR FUELGRADE	S																						55	
	Unicaded REG	110	110	165	110	275	275	275	110															1430	
	M15	ង	55																					011	
	CARB III																								26150.5 825 495
	E24 E25 CARB I CARBII	55	165	220	110	55	OII	220	55	55														1045	
	E22	110	220	110	110																			550	per year ber year
2009 GAGE	E85 TEST FUEL E10 E20	55	55	110	165	55	011																	550	24,600 of unleaded gaoline per year 900 of lead gasoline per year 9,000 of alcohol fuel blends per year

2010															
GAGE												HALTERMANN		CORRIGAN	
E85 TEST FUEL	E10	E20	E22	E24 E25 E30 ES0 CARE	CARBII	CARB III	M15	Unleaded REGULAR	Fuel grade ethanol	Brazil Aggressive	EEE	TIER II EEE	Regular grade E10	SUNOCO	93 GAS
110	220	330	SS	SS 5	165		220	55	5\$	55	165	1000	10	165	275
55	55	220	55		275		55	55			55	950		110	275
220	55	550	s		165		55	275			165	1000		275	110
5	55	550			55		55				220	950		275	
330	55	550			55		55				55	950			
55	5	550			55							950			
330	55				165							950			
55	165				S5							900			
550	S5				385										
165															
550															
550															
330															
770															
1100															
\$175	700	2750	115		1375			385	55	55	660	7.00	10	825	660
51/5	720	2750	115	\$5 5	1375		440	385	22	55	660	7650	10	823	660
24,600 of unleaded	gasoline r	oer vear		143	25										
900 of lead gasoline					25										
9,000 of alcohol fue		er vear		57											
	·· ····			•.											

2011 GAGE														HALTERMANN	CORRIGAN	
E85 TEST FUEL	E10	E20	E22	E30	E93	CARB I	CARBII	CARB III	M15	Unleaded REGULAR	BRAZILIAN ETHANOL	Fuel Grade Ethanol	EEE	TIER II EEE	SUNOCO	93-GASOLINE
1000	55	550	5	S 5	55		55		165	220	330	5	330	1000	110	220
220	55	880	55				110		110	110	330		275	1000	220	165
330	\$5	660	165				55		55	220	330			1000	275	
950	\$5	330	55				110		165	220				1000	330	
1100	55	330	550				220		55	330				1000		
1000		330	330				165		S 5	165				1000		
950		660	660							275				1000		
1000		55	440											1000		
1000		550	S 5													
1000		440														
385																
55																
1000																
110																
330																
1000																
1000																
165																
110																
5																
1000																
55																
55																
13820	275	4785	2315	55	55		715		605	1540	990	5	605	8000	935	385
24,600 of unleade	d gasolini	e per year				18620										
900 of lead gasolir				935												

⁹⁰⁰ of lead gasoline per year 9,000 of alcohol fuel blends per year

15530

2012 GAGE	~~	~~~	524			535			61.00 H	0400 N				Sud Sud-Star-1	HALTERMANN	CORRIGAN
E85 TEST FUEL	ES 55	£10	E20	E22	E24	E25 55	661	CARB	CARB II	CARB III	M15	Unleaded REGULAR	Brazil Hydrous Fuel Ethanol	Fuel Grade Ethanol		SUNOCO
110 1400	25	55 440	900 900	330	55 770	55	55		165 110		110 110	110 165	55 770	SS	1000	55
1400		330	275	1000 165	275				220		110	165	55		1000	275 275
		110	215	110	275				220			220	55		1000 1000	273
		55		55	2/3				220			165			1000	
		55		1200								165			1000	
		110		110								110			1000	
												55				
1510	55	1155	2075	2970	1375	55	55		715		220	1155	830	55	6000	605
24,600 of unleaded g 900 of lead gasoline p 9,000 of alcohol fuel (14125 605 4150												

2013 GAGE											HALTERMANN		CORRIGAN
E85 TEST FUEL	E10	E20	E22	E24	E25	CARB I	CARB II	CARB III	M15	Unleaded REGULAR	TIER II EEE	XE-M4CX401-C	SUNOCO
55	55	500	55	55	275		110	110	55	110	1000	55	275
110	55	330	330	600			220	220	110	110	1000		275
110	55	1000	110				220	220	55	165	1000		330
55	55	1000	500				220	55	220	110			
55	165	165	110						55	55			
		500	165						55	110			
		275	500						55	110			
			500						110	165			
			55							55			
			110							55			
			550										
			1000										
385	385	3770	3985	655	275		770	605	715	1045	3000	55	880
24,600 of unleaded gasoline per year 900 of lead gasoline per year						13615 880							

2030

9,000 of alcohol fuel blends per year

ATTACHMENT III

FUEL PURCHASE RECORDS