

TEST REPORT MERCURY AND AIR TOXICS STANDARDS (MATS) MARQUETTE BOARD OF LIGHT AND POWER SHIRAS STEAM PLANT BOILER UNIT 3 MARQUETTE, MICHIGAN

JUN 11 2018

Prepared For:

Marquette Board of Light and Power

2200 Wright Street Marquette, Michigan 49855 AIR QUALITY DIVISION

Prepared By:

Montrose Air Quality Services, LLC 1371 Brummel Avenue Elk Grove Village, Illinois

Document Number: Test Date: Document Date: 023AS-342629-RT-97 April 2 through May 2, 2018 June 1, 2018

1.0 PROJECT OVERVIEW

1.1 GENERAL

Montrose Air Quality Services, LLC (Montrose) formerly known as Airtech Environmental Services Inc. (Airtech) located at 1371 Brummel Avenue, Elk Grove Village, Illinois was contracted by Marquette Board of Light and Power (MBLP) to determine compliance with the "Mercury and Air Toxics Standards" (MATS) at the Shiras Steam Plant located in Marquette, Michigan. The specific objective of this test program was as follows:

• Determine the concentration of mercury (Hg) over a thirty (30) "boiler operating day" period from the exhaust of one (1) coal-fired boiler, designated Unit 3

The purpose of this test program is to determine compliance with the "Mercury and Air Toxics Standards" (MATS) and "National Emission Standards for Hazardous Air Pollutants" (NESHAP) rule issued pursuant to Clean Air Act (CAA) section 112. Testing was performed to meet the requirements of MBLP; the Shiras Steam Plant; the Michigan Department of Environmental Quality (MDEQ); the United States Environmental Protection Agency (U.S. EPA); and 40 CFR Part 63, Subpart UUUUU, as applicable.

Testing took place on April 2 through May 2, 2018. Coordinating the field portion of the test program were:

Thomas Skewis – Marquette Board of Light & Power Brandon Check, QSTI – Airtech Environmental Services Inc.

1.2 METHODOLOGY

1.2.1 30-Day Hg Testing Methodology

EPA Method 30B was used to determine the concentration of vapor-phase Hg at the test location. A sample of the gas stream was withdrawn at a constant rate from the test location. Vapor phase Hg in the gas stream collected on paired, glass, in-situ sorbent traps packed with a carbon media designed to collect both gaseous oxidized mercury (Hg⁺²) and gaseous elemental mercury (Hg⁰). The mass of Hg collected with each trap was compared to the volume of dry gas sampled to calculate the total Hg concentration. Ohio Lumex, Co. provided all sorbent traps used for this project.

Daily status checks of the EPA Method 30B sampling train parameters was conducted remotely by Montrose personnel, using an automated Apex Instruments XC-6000EM mercury emissions sampler equipped with a logging computer. Traps were replaced every five (5) to eight (8) days. The fuel specific default moisture value of 8.0% was used to convert the milligram per dry standard cubic meter results to a "wet" concentration.

Analysis of sorbent traps was performed by Montrose personnel at the Montrose laboratory located in Elk Grove Village, Illinois, using an Ohio Lumex Model RA-915⁺ low level mercury analyzer combined with the M324 sorbent tube attachment.

Marquette Board of Light & Power: Marquette, MI Unit 3 MATS Testing 2018

Results of the Hg testing are expressed in units of micrograms per dry standard cubic meter (μ g/dscm), in units of micrograms per standard cubic meter (μ g/scm), in units of pounds per trillion British thermal units (Ib/TBtu) and pounds per gigawatt hour (Ib/GWh).

1.2.2 Special Considerations

Per the requirements of 40 CFR Part 63, Subpart UUUUU, the following strategies were utilized throughout the test program:

- Under §63.10005(h)(3), the Method 30B sampling probe tip was to be located at a point within the 10 percent (10%) centroidal area of the duct at a location that meets EPA Method 1 criteria.
- Under §63.10005(h)(3)(i)(A), diluent gas (CO₂ or O₂) data, using the diluent gas monitor that has been certified according to part 75 of this chapter (i.e. plant CEMS data) was used.
- Under §63.10005(h)(3)(i)(B), stack gas flow rate data, using the flow rate monitor that has been certified according to part 75 of this chapter. (i.e. plant CEMS data) was used.
- Under §63.10005(h)(3)(ii), plant CEMS data used to measure CO₂ (or O₂) concentration, and/or flow rate, and/or moisture, was recorded by plant personnel as hourly average values of each parameter throughout the 30-boiler operating day test period.
- Under Table 5 (4) LEE Testing (f), emissions concentrations for Hg were converted from the LEE test to Ib/TBtu or Ib/GWh emissions rates, using the calculations found in EPA Method 19.

1.3 PARAMETERS

The following gas parameter was determined at the test location:

total vapor phase mercury concentration

Marquette Board of Light & Power: Marquette, MI Unit 3 MATS Testing 2018

JUN 11 2018

RECEIVED

1.4 DISCUSSION OF RESULTS

AIR QUALITY DIVISION

A complete summary of the test results is presented in Table 1¹.

The data below summarizes the test results compared to the regulatory limits.

Average Emission Rate
(Ib/TBtu)Average Emission Rate
(Ib/GWh)Results0.80860.0028Limit1.20.013

TABLE 1-1 TEST RESULTS AND REGULATORY LIMITS

A summary of the deviation between the mercury results for Trains A (Unspiked) and B (Spiked) is shown in the table below:

TABLE 1-2 STANDARD DEVIATION TRAINS A AND B

Difference Results	Run 1	Run 2	Run 3	Run 4	Criteria
Train A (µg/dscm)	0.869	1.20	0.838	0.665	NA
Train B (µg/dscm)	1.01	1.09	0.832	0.628	NA
Diff. (µg/dscm)	0.139	0.106	0.006	0.0362	<0.2

A summary of the percent mercury breakthrough into the second fraction of each trap for Trains A (Unspiked) and B (Spiked) is shown below:

TABLE 1-3 MERCURY BREAKTHROUGH

Breakthrough Results	Run 1	Run 2	Run 3	Run 4	Criteria
Train A (%)	0.048	0.033	0.000	0.039	<10
Train B (%)	0.078	0.045	0.003	0.075	<10

A summary of the spike recoveries for each test run is shown below. The average mercury spike recovery was 98.4 percent.

¹MEASUREMENT UNCERTAINTY STATEMENT

Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting the results contained within this report. Whenever possible, Montrose personnel reduce the impact of these uncertainty factors through the use of approved and validated test methods. In addition, Montrose personnel perform routine instrument and equipment calibrations and ensure that the calibration standards, instruments, and equipment used during test events meet, at a minimum, test method specifications as well as the specifications of the Montrose Quality Manual and ASTM D7036-04. The limitations of the various methods, instruments, equipment, and materials utilized during this test have been reasonably considered, but the ultimate impact of the cumulative uncertainty of this project is not fully identified within the results of this report.

Marquette Board of Light & Power: Marquette, MI Unit 3 MATS Testing 2018

TABLE 1-4 SPIKE RECOVERY

Spike Results	Run 1	Run 2	Run 3	Run 4	Criteria
Recovery – R (%)	113	86.8	99.2	95	85 <r<115< td=""></r<115<>

023AS-342629-RT-97

2.0 SUMMARY OF RESULTS

Test Parameters	Week 1	Week 2	Week 3	Week 4	Average
Date	4/2/2018	4/10/2018	4/17/2018	4/24/2018	
Start Time	15:38	8:41	10:59	11:01	
Date	4/10/2018	4/17/2018	4/24/2018	5/2/2018	
Stop Time	6:39	10:13	10:22	7:47	
Process Conditions					
Load (MW)	35.0	36.0	29.0	26.0	
Unit Conditions					
Carbon Dioxide (%)	11.70	11.80	11.50	11.50	11.63
CO ₂ Based fuel Factor (Fc, scf/MMBtu)	1,840	1,840	1,840	1,840	1840
Moisture (%)	8.00	8.00	8.00	8.0 0	8.00
Total Mercury Results					
Average Concentration (µg/dscm)	0.9240	1.1442	0.8353	0.6464	0.891
Average Concentration (µg/scm)	0.8501	1.0527	0.7684	0.5947	0.819
Average Concentration (lb/scf)	5.31E-11	6.57E-11	4.80E-11	3.71E-11	0.000
Average Emission Rate (lb/MMBtu, F。)	8.35E-07	1.02E-06	7.68E-07	5.94E-07	8.09E-07
Average Emission Rate (lb/TBtu, F _c)	0.835	1.02	0.768	0.594	0.80 9
Average Emission Rate (lb/GWh)	0.00284	0.00349	0.00261	0.00202	0.002

TABLE 2-1 SUMMARY OF THE UNIT 3 MERCURY RESULTS

3.0 TEST PROCEDURES

3.1 METHOD LISTING

The following test methods were referenced for the test program. These methods can be found in 40 CFR, Part 60, Appendix A.

- Method 19 Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides Emission Rates
- Method 30B Determination of Total Vapor Phase Mercury Emissions from Coal-Fired Combustion Sources Using Carbon Sorbent Traps

3.2 METHOD DESCRIPTION

3.2.1 EPA Method 19

EPA Method 19 was used to calculate the Hg emission rates, based on the CO_2 content of the sample gas and an appropriate F factor, which is the ratio of combustion gas volumes to heat inputs. For the testing reported in this document, the standard CO_2 based F factor of 1,840 for sub-bituminous coal used to calculate emission rates in terms of pounds per trillion Btu (lb/TBtu).

3.2.2 EPA Method 30B

The total vapor phase mercury (Hg) concentration at the test location was determined using EPA Method 30B. A known volume of flue gas was extracted from the test location through paired, in-stack, sorbent media traps. After sampling, the traps were prepared for analysis by thermal desorption and analyzed using atomic absorption spectrometry.

The analytical matrix interference test was performed and the minimum mass of Hg that could be collected per sample was determined by Ohio Lumex. Through the use of this minimum mass and previous data collected at the test locations, target sample volumes and sample rates were determined. Each test run was approximately seven to eight (7-8) days in length.

Sample gas passed through the sorbent traps, a heated sample line and then through a gas condenser system. The volume of dry gas exiting the gas condenser system was measured with a dry gas meter. A diagram of the Method 30B sampling system is shown in Figure 2 of the Appendix.

Prior to the test run, each sample train was leak checked by capping the sorbent trap and pulling a vacuum of 15" Hg. The leak rate for an individual train did not exceed four percent of the target sampling rate. After the leak check, the trap was uncapped, placed in the stack, and sampling was initiated at the predetermined flow rate. The sample flow rate, gas meter reading, the stack temperature, dry gas meter temperatures, the temperatures of heated equipment and the sampling system vacuum readings were recorded periodically during the sampling period. After the test run, each train was leak checked at the maximum vacuum reached during the sampling period. The leak rate did not exceed four percent of the average sampling rate for the data collection period. Each trap was then removed from the probe by an individual wearing gloves, and sealed at both ends. Any deposited material on the outside of the trap was removed. The sorbent trap was placed in an appropriate sample storage container and stored and transported to the laboratory according to procedures in ASTM WK223.

Handling of samples on-site was performed by Montrose personnel. Samplers used clean proper PPE for each sample to prevent cross contamination.

Analysis of the samples followed the procedures outlined in EPA Method 30B.

Analysis of sorbent traps was performed by Montrose personnel at the Montrose laboratory located in Elk Grove Village, Illinois, using an Ohio Lumex Model RA-915⁺ low level mercury analyzer combined with the M324 sorbent tube attachment. The analyzer was calibrated per EPA Method 30B. A known volume of mercury standard was pipetted onto clean sorbent. The sorbent was placed in a small ladle and sodium carbonate was added to prevent interference from iodine, which is contained in the sorbent. The ladle was then placed in the RP-M324 furnace, which was purged with air. The air, containing the desorbed mercury, passed through to the RA-915+ mercury analyzer. The analyzer uses the principle of Zeeman atomic absorption spectrometry for analysis.

The back half and front half of each trap was prepared and analyzed separately in order to calculate collection efficiency. The sorbent contained in each section of the trap was removed from the trap and placed in a small ladle. The sorbent was then analyzed as outlined previously.

A field recovery test was performed by collecting four (4) sets of paired samples with one (1) of each pair spiked with a known level of Hg. Ohio Lumex performed the spiking of sorbent traps. The stack gas was sampled with the two (2) trains simultaneously using the procedures outlined previously. The total sample volume was within 20 percent of the target sample volume for the field sample test runs. The sorbent traps from the two (2) trains were analyzed using the analytical procedures and instrumentation as outlined previously. The fraction of spiked Hg recovered (R) were determined for a total of three runs. The average of the three R values was between 85 and 115 percent.

4.0 DESCRIPTION OF INSTALLATION

The table below lists the major components of the installed CEMS and their associated serial numbers:

Unit #3 Exhaust

Component	Manufacturer	Model No.	Serial Number
CO ₂ Analyzer – Diluent Monitor	Thermo	410i	0814930305
NO _x Analyzer	Thermo	42i-D	0609416181
SO2 Analyzer	Thermo	43i	0609416182
Flow	Sick Mahaik	FIOWSIC100	8508724

Unit #3 Inlet

Component	Manufacturer	Model No.	Serial Number
CO ₂ Analyzer	Thermo	410i	814930306
SO2 Analyzer	Thermo	43i	1006241005

The following table summarizes the constituents monitored by the CEMS, the detection principle for each constituent, the units reported for each constituent and the analyzer operating ranges:

Unit #3 Exhaust

Constituent	Detection Principle	Units	Range
Carbon Dioxide	non-dispersive infrared	(%)	0-20
Nitrogen Oxides	chemiluminescence	(ppm)	0-300
Sulfur Dioxide	pulsed fluorescence	(ppm)	0-130, 0-700

Unit #3 Inlet

Constituent	Detection Principle	Units	Range	
Carbon Dioxide	non-dispersive infrared	(%)	0-20	
Sulfur Dioxide	pulsed fluorescence	(ppm)	0-700	

