1.0 EXECUTIVE SUMMARY MOSTARDI PLATT conducted a formaldehyde emissions test program for Upper Michigan Energy Resources Corporation (UMERC) on May 19 and 20, 2020 at A. J. Mihm Generating S tation on the Reciprocating Internal Combustion Engine (EURICE) 1, EURICE2, and EURICE3 O utlet Ducts in Pelkie, Michigan. The purpose of the test program was to meet compliance d emonstration requirements for emission rates in accordance with Renewable Operating Permit MI-ROP-P0796-2020 & Permit to Install MI-PTI-P0796-2020 and the RICE MACT 40 CFR Part 63 Subpart ZZZZ. This report summarizes the results of the test program and test methods used. The test locations, test dates, and test parameters are summarized below. | TEST INFORMATION | | | | | | | |------------------|--------------|--|--|--|--|--| | Test Locations | Test Date | Test Parameters | | | | | | EURICE1 | May 19, 2020 | | | | | | | EURICE2 | May 19, 2020 | Formaldehyde (CH ₂ O), Moisture (H ₂ O),
and Oxygen (O ₂) | | | | | | EURICE3 | May 20, 2020 | and Oxygen (O2) | | | | | A.J. Mihm Generating Station electric generation facility includes three (3) Wärtsilä W18V50SG natural gas-fired, four stroke, lean burn, spark ignition reciprocating internal combustion engines (RICE) coupled to 19,260 kW electric generators, a 1,000 kW natural gas-fired emergency generator, and one natural gas-fired natural gas conditioning heater. The RICE electric generating unit engines utilize pipeline quality natural gas and are equipped with selective catalytic reduction (SCR) for nitrogen oxides (NOx) control and oxidation catalyst systems for carbon monoxide (CO), volatile organic compound (VOC), and organic hazardous air pollutant (HAP) control. Each RICE electric generating unit exhausts into an individual stack. Selected results of the test program are summarized below on a ppmvd @ 15% O₂ basis. A complete summary of emission test results follows the narrative portion of this report. | TEST RESULTS | | | | | | | | |---------------|----------------|-------------------------------|---------------------------------|--|--|--|--| | Test Location | Test Parameter | Emission Limit | Actual Test Result | | | | | | EURICE1 | | | 1.02 ppmvd @ 15% O ₂ | | | | | | EURICE2 | CH₂O | 14 ppmvd @ 15% O ₂ | 0.92 ppmvd @ 15% O ₂ | | | | | | EURICE3 | | | 0.77 ppmvd @ 15% O ₂ | | | | | Operating Data as provided by the plant is included in Appendix A. The identifications of the individuals associated with the test program are summarized below. | | TEST PERSONNEL INFOR | MATION | |-----------------------------------|--|---| | Location | Address | Contact | | Test Coordinator | WEC Energy Group, Inc
231 W. Michigan Street
Milwaukee, Wisconsin 53203 | Mr. Justin Kowalski
Senior Environmental Consultant
414-221-2265 | | Test Facility | Upper Michigan Energy Resources
Corporation
A.J. Mihm Generating Station
16017 Sarya Road
Pelkie, Michigan 49958 | justin.kowalski@wecenergygroup.com | | Testing Company
Representative | Mostardi Platt
888 Industrial Drive
Elmhurst, Illinois 60126 | Mr. Richard Sollars
Senior Project Manager
(630) 993-2100 (phone)
rsollars@mp-mail.com | The test crew consisted Messrs. K. West, W. Petrovich, R. Simon, and R. Sollars of Mostardi Platt. ## 2.0 TEST METHODOLOGY Emission testing was conducted following the methods specified in 40CFR60, Appendix A and 40CFR63, Appendix A. Schematics of the test section diagrams and sampling trains used are included in Appendix B and C, respectively. Calculation nomenclature and example calculations are included in Appendix D. Reference method test data can be found in Appendix E. The following methodology was used during the test program: ## Method 3A Oxygen (O₂) Determination Oxygen (O_2) concentrations were measured to determine emission concentrations in ppmvd corrected to 15% O_2 in accordance with Method 3A. Servomex analyzers were used to determine flue gas oxygen. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix F and copies of gas cylinder certifications are included in Appendix G. ## Method 320 Formaldehyde (CH₂O) and Moisture (H₂O) Determination The Method 320 sampling and measurement system meets the requirements of US EPA Reference Method 320, "Vapor Phase Organic and Inorganic Emissions by Extractive FTIR," 40CFR63, Appendix A. This method applies to the measurement of combustion gas concentrations. With this method, gas samples are extracted from the sample locations through heated Teflon sample lines to the analyzer. FTIR technology works on the principle that most gases absorb infrared light. This is true for all compounds with the exception of homonuclear diatomic molecules and noble gases such as: N2, O2, H2, He, Ne, and Ar. Vibrations, stretches, bends, and rotations within the bonds of a molecule determine the infrared absorption distinctiveness. The absorption creates a "fingerprint" which is unique to each given compound. The quantity of infrared light absorbed is proportional to the gas concentration. Most compounds have absorbencies at different infrared frequencies, allowing the simultaneous analysis of multiple compounds at one time. The FTIR software compares each sample spectrum to a user-selected list of calibration references and performs a classical least squares analysis to determine concentration data on a wet volume basis and the spectral residuals for each analyte (the error associated with each measurement). FTIR data was collected using an MKS MultiGas 2030 FTIR spectrometer. The FTIR was equipped with a temperature-controlled, 5.11 meter multi-pass gas cell maintained at 191°C. Gas flows and sampling system pressures were monitored using a rotameter and pressure transducer. All data was collected at 0.5 cm⁻¹ resolution. Each spectrum was derived from the coaddition of 62 scans, with a new data point generated approximately every one minute. Analyzer data for each run is present is Appendix E. | SAMPLING SYSTEM PARAMETERS | | | | | | | | |----------------------------|----------------------------------|----------------------------|---------------------------------------|---------------------------|--|--|--| | MKS Serial # | Sampling Line | Probe
Assembly | Particulate Filter
Media | Operating
Temperatures | | | | | 110161896 | 100' 3/8" dia.,
heated Teflon | Heated 8', 3/8"
dia. SS | 0.01µ heated borosilicate glass fiber | 191°C | | | | QA/QC procedures followed US EPA Method 320. See below for QA/QC procedure details and list of calibration gas standards. All calibration gases were introduced to the analyzer and the sampling system using an instrument grade stainless steel rotameter. All QA/QC procedures were within the acceptance criteria allowance of the applicable EPA methodology. See Appendix F for FTIR QA/QC Data and instrument linearity validations. | | F1 | TIR QA/QC PRO | CEDURES | | | | |--|---|---|---|----------------------------------|------------------------------------|--------| | QA/QC
Specification | Purpose | Calibration
Gas Analyte | Delivery | Frequency | Acceptance
Criteria | Result | | M320: Zero | Verify that the FTIR is free of contaminants & zero the FTIR | Nitrogen
(zero) | Direct to
FTIR | pre/post test | < MDL or
Noise | Pass | | M320:Calibration
Transfer
Standard (CTS)
Direct | Verify FTIR linearity,
confirm optical path
length | Ethylene | Direct to
FTIR | pretest | +/- 5% cert.
value | Pass | | M320: Analyte
Direct | Verify FTIR calibration | Acetaldehyde,
Methanol,
SF6 | Direct to FTIR | pretest | +/- 5% cert.
value | Pass | | M320: CTS
Response | Verify system linearity, recovery, response time | Ethylene | Sampling
System | Daily,
pre/post test | +/- 5% of
Direct
Measurement | Pass | | M320: Zero
Response | Verify sampling
system has no bias
for analytes of
interest | Nitrous Oxide
with nitrogen
balance | Sampling
System | pretest | Bias correct
data | Pass | | M320: Analyte
Spike | Verify system ability to deliver and quantify analyte of interest in the presence of effluent gases | Acetaldehyde,
Methanol,
SF6 | Dynamic
Addition to
Sampling
System,
1:10
effluent | Throughout
testing –
daily | +/- 30%
theoretical
recovery | Pass | Note: The determined concentrations from direct analyses were used in all system/spike recovery calculations. | | CALIBRATION GAS STANDARDS | | | | | | | | | |-------------------------------|---------------------------|--------|------------|--|--|--|--|--|--| | Components | Concentration (ppm) | Vendor | Cylinder # | Standard Type | | | | | | | Ethylene | 99.32 | Airgas | CC420697 | Certified Standard-Spec +/- 2% | | | | | | | Acetaldehyde/
Methanol/SF6 | 199.8 / 209.4 / 5.029 | Airgas | CC718379 | Certified Standard +/- 2%
(Acetaldehyde/Methanol)
Certified Standard +/- 5% (SF ₆) | | | | | | | Nitrogen | Zero Gas | Airgas | N/A | UHP Grade | | | | | | #### **Analyte Spiking** Acetaldehyde and methanol spiking was performed prior to testing to verify the ability of the sampling system to quantitatively deliver a sample containing acetaldehyde and methanol from the base of the probe to the FTIR. Analyte spiking assures the ability of the FTIR sampling system to recover volatile organics in the presence of effluent gas. As part of the spiking procedure, samples were measured to determine native acetaldehyde and methanol concentrations to be used in the spike recovery calculations. The analyte spiking gases contained a low concentration of sulfur hexafluoride (SF_6). The determined SF_6 concentration in the spiked sample was used to calculate the dilution factor of the spike and thus used to calculate the concentration of the spiked acetaldehyde and methanol. The spike target dilution ratio was 1:10 or less. The following equation illustrates the percent recovery calculation. $$DF = \frac{SF6(spk)}{SF6(direct)}$$ (Sec. 9.2.3 (3) USEPA Method 320) $$CS = DF * Spike(dir) + Unspike(1 - DF)$$ (Sec. 9.2.3 (4) USEPA Method 320) DF = Dilution factor of the spike gas $SF_{6(dir)} = SF_6$ concentration measured directly in undiluted spike gas SF_{6(spk)} = Diluted SF₆ concentration measured in a spiked sample Spike_{dir}= Concentration of the analyte in the spike standard measure by the FTIR directly CS = Expected concentration of the spiked samples Unspike = Native concentration of analytes in unspiked samples #### Post Collection Data Validation As part of the data validation procedure, reference spectra are manually fit to that of the sample spectra and a concentration is determined. The reference spectra are scaled to match the peak amplitude of the sample, providing a scaling factor. The scaling factor multiplied by the reference spectra concentration is used to determine the concentration value for the sample spectra. Sample pressure and temperature corrections are then applied to compute the final sample concentration. The manually calculated results are then compared with the software-generated results. The data is then validated if the two concentrations are within \pm 20% agreement. In some cases the percent difference between the two analyses is relatively large, but the absolute concentration difference is minimal. If this is not determined to be the case, then the spectra are reviewed for possible spectral interferences or any other possible causes leading to incorrectly quantified data. See Appendix F FTIR QAQC for manual subtractions. #### **Detection Limit** The detection limit of each analyte was calculated following Annex A2 of ASTM D6348-12 procedure using spectra that contained similar amounts of moisture and carbon dioxide. | Analyte | Detection Limit
(ppmv wet) | Detection Limit
(%v) | |--------------|-------------------------------|-------------------------| | Formaldehyde | 0.2 | - | | Moisture | - | 0.1 | The spectral residuals for each compound is calculated using the classical least squares analysis. When the residual error exceeds the measured concentration, the compound is considered a non-detect, allowing the residual to verify the detection limit. The spectral residual also permits the analyst to determine if there are possible interferences in the sample matrix. QA/QC data are found in Appendix F. Copies of gas cylinder certifications are found in Appendix G. All concentration data were recorded on a wet, volume basis. The sample and data collection followed the procedures outlined in Method 320. # **3.0 TEST RESULT SUMMARIES** | Upper Michigan Energy Resources Corporation A.J. Mihm Generating Station EURICE1 Outlet Duct | | | | | | | | | | |--|----------|---------------|-------------|------|--------------------------------|-----------------------|---------------------|------------------------|--| | Test
No. | Date | Start
Time | End
Time | H₂O% | O ₂ %
Correction | O ₂ %, dry | Formaldehyde, ppmvw | Formaldehyde,
ppmvd | Formaldehyde,
ppmvd @ 15%
O ₂ | | 1 | 05/19/20 | 07:55 | 09:00 | 9.75 | 15.0 | 11.9 | 1.31 | 1.45 | 0.95 | | 2 | 05/19/20 | 09:15 | 10:14 | 9.67 | 15.0 | 11.7 | 1.42 | 1.57 | 1.01 | | 3 | 05/19/20 | 10:30 | 11:29 | 9.71 | 15.0 | 11.7 | 1.57 | 1.74 | 1.12 | | | Aver | rage | • • | 9.71 | 15.0 | 11.8 | 1.43 | 1.59 | 1.02 | | | Upper Michigan Energy Resources Corporation A.J. Mihm Generating Station EURICE2 Outlet Duct | | | | | | | | | |-------------|--|---------------|-------------|------|--------------------------------|-----------------------|---------------------|---------------------|--| | Test
No. | Date | Start
Time | End
Time | H₂O% | O ₂ %
Correction | O ₂ %, dry | Formaldehyde, ppmvw | Formaldehyde, ppmvd | Formaldehyde, ppmvd @ 15% O ₂ | | 1 | 05/19/20 | 12:05 | 13:09 | 9.78 | 15.0 | 11.5 | 1.32 | 1.47 | 0.92 | | 2 | 05/19/20 | 13:25 | 14:24 | 9.78 | 15.0 | 11.6 | 1.33 | 1.48 | 0.94 | | 3 | 05/19/20 | 14:40 | 15:39 | 9.80 | 15.0 | 11.6 | 1.29 | 1.43 | 0.91 | | | Aver | rage | | 9.79 | 15.0 | 11.6 | 1.32 | 1.46 | 0.92 | | | Upper Michigan Energy Resources Corporation A.J. Mihm Generating Station EURICE3 Outlet Duct | | | | | | | | | | |-------------|--|---------------|-------------|-------------------|--------------------------------|-----------------------|------------------------|------------------------|--|--| | Test
No. | Date | Start
Time | End
Time | H ₂ O% | O ₂ %
Correction | O ₂ %, dry | Formaldehyde,
ppmvw | Formaldehyde,
ppmvd | Formaldehyde, ppmvd @ 15% O ₂ | | | 1 | 05/20/20 | 07:25 | 08:29 | 10.06 | 15.0 | 11.5 | 1.05 | 1.16 | 0.73 | | | 2 | 05/20/20 | 08:45 | 09:44 | 10.13 | 15.0 | 11.5 | 1.13 | 1.25 | 0.79 | | | 3 | 05/20/20 | 10:00 | 10:59 | 10.23 | 15.0 | 11.4 | 1.15 | 1.28 | 0.79 | | | | Aver | age | | 10.14 | 15.0 | 11.5 | 1.11 | 1.23 | 0.77 | | ## **4.0 CERTIFICATION** MOSTARDI PLATT is pleased to have been of service to Upper Michigan Energy Resources Corporation. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100. ### CERTIFICATION MOSTARDI PLATT As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report. | R. J. | Project Manager | |--------------------|-------------------| | Richard J. Sollars | Froject Manager | | Scotten Barrer | | | Scott W. Banach | Quality Assurance | # **APPENDICES** ## **Appendix A – Plant Operating Data** ### A.J. Mihm Generating Station RICE MACT Emissions Testing Summary of Operating Data May 19 & 20, 2020 | EURICE1 | | | | | |---|-----------------|-----------------|-----------------|-----------------| | 5/19/2020 | 755 | 0.45 | 1000 | | | Start Time | 755 | 915 | 1030 | | | End Time | 859 | 1014 | 1129 | | | | Run 1 | Run 2 | Run 3 | Average | | | 40.000 | | | | | Engine (kW) | 18,933 | 18,930 | 18,932 | 18,932 | | Engine (kw) Engine natural gas use (pound/hour) | 18,933
6,636 | 18,930
6,657 | 18,932
6,658 | 18,932
6,650 | | | • | , | • | , | | EURICE2 | | | | | |---|--------|--------|--------|---------| | 5/19/2020 | | | | | | Start Time | 1205 | 1325 | 1440 | | | End Time | 1309 | 1424 | 1539 | | | | Run 1 | Run 2 | Run 3 | Average | | Engine (kW) | 18,887 | 18,880 | 18,878 | 18,882 | | Engine natural gas use (pound/hour) | 6,651 | 6,658 | 6,646 | 6,652 | | SCR/Oxidation catalyst inlet temperature) (deg F) | 719 | 716 | 714 | 716 | | Pressure drop across the oxidation catalyst (PSI) | 0.09 | 0.09 | 0.09 | 0.09 | | EURICE3 | | | | | |---|--------|--------|--------|---------| | 5/20/2020 | | | | | | Start Time | 725 | 845 | 1000 | | | End Time | 829 | 944 | 1059 | | | | Run 1 | Run 2 | Run 3 | Average | | Engine (kW) | 18,863 | 18,862 | 18,871 | 18,865 | | Engine natural gas use (pound/hour) | 6,613 | 6,616 | 6,640 | 6,623 | | | | | | | | SCR/Oxidation catalyst inlet temperature) (deg F) | 717 | 713 | 711 | 714 | ### Realtime Point ID: 99556 ### MHM11 ### SCR Inlet Temperature | Start Time | End Time | Value/Average (Deg F) | |----------------------|----------------------|-----------------------| | 05-19-2020 07:30 EDT | 05-19-2020 07:35 EDT | 718.426 | | 05-19-2020 07:35 EDT | 05-19-2020 07:40 EDT | 719.600 | | 05-19-2020 07:40 EDT | 05-19-2020 07:45 EDT | 719.600 | | 05-19-2020 07:45 EDT | 05-19-2020 07:50 EDT | 719.600 | | 05-19-2020 07:50 EDT | 05-19-2020 07:55 EDT | 719.600 | | 05-19-2020 07:55 EDT | 05-19-2020 08:00 EDT | 719.600 | | 05-19-2020 08:00 EDT | 05-19-2020 08:05 EDT | 719.625 | | 05-19-2020 08:05 EDT | 05-19-2020 08:10 EDT | 720.171 | | 05-19-2020 08:10 EDT | 05-19-2020 08:15 EDT | 721.069 | | 05-19-2020 08:15 EDT | 05-19-2020 08:20 EDT | 720.858 | | 05-19-2020 08:20 EDT | 05-19-2020 08:25 EDT | 719.965 | | 05-19-2020 08:25 EDT | 05-19-2020 08:30 EDT | 720.355 | | 05-19-2020 08:30 EDT | 05-19-2020 08:35 EDT | 719.600 | | 05-19-2020 08:35 EDT | 05-19-2020 08:40 EDT | 719.600 | | 05-19-2020 08:40 EDT | 05-19-2020 08:45 EDT | 719.600 | | 05-19-2020 08:45 EDT | 05-19-2020 08:50 EDT | 719.600 | | 05-19-2020 08:50 EDT | 05-19-2020 08:55 EDT | 719.600 | | 05-19-2020 08:55 EDT | 05-19-2020 09:00 EDT | 719.600 | | 05-19-2020 09:00 EDT | 05-19-2020 09:05 EDT | 719.418 | | 05-19-2020 09:05 EDT | 05-19-2020 09:10 EDT | 718.480 | | 05-19-2020 09:10 EDT | 05-19-2020 09:15 EDT | 718.050 | | 05-19-2020 09:15 EDT | 05-19-2020 09:20 EDT | 718.501 | | 05-19-2020 09:20 EDT | 05-19-2020 09:25 EDT | 718.080 | | 05-19-2020 09:25 EDT | 05-19-2020 09:30 EDT | 717.800 | | 05-19-2020 09:30 EDT | 05-19-2020 09:35 EDT | 717.800 | | 05-19-2020 09:35 EDT | 05-19-2020 09:40 EDT | 717.800 | | 05-19-2020 09:40 EDT | 05-19-2020 09:45 EDT | 717.795 | | 05-19-2020 09:45 EDT | 05-19-2020 09:50 EDT | 717.247 | | 05-19-2020 09:50 EDT | 05-19-2020 09:55 EDT | 716.073 | | 05-19-2020 09:55 EDT | 05-19-2020 10:00 EDT | 716.942 | | 05-19-2020 10:00 EDT | 05-19-2020 10:05 EDT | 716.105 | | 05-19-2020 10:05 EDT | 05-19-2020 10:10 EDT | 716.000 | | 05-19-2020 10:10 EDT | 05-19-2020 10:15 EDT | 716.000 | | 05-19-2020 10:15 EDT | 05-19-2020 10:20 EDT | 716.000 | | 05-19-2020 10:20 EDT | 05-19-2020 10:25 EDT | 716.000 | | 05-19-2020 10:25 EDT | 05-19-2020 10:30 EDT | 716.000 | | 05-19-2020 10:30 EDT | 05-19-2020 10:35 EDT | 716.000 | | 05-19-2020 10:35 EDT | 05-19-2020 10:40 EDT | 716.000 | | 05-19-2020 10:40 EDT | 05-19-2020 10:45 EDT | 716.000 | | 05-19-2020 10:45 EDT | 05-19-2020 10:50 EDT | 716.000 | | 05-19-2020 10:50 EDT | 05-19-2020 10:55 EDT | 715.290 | | 05-19-2020 10:55 EDT | 05-19-2020 11:00 EDT | 714.200 | | 05-19-2020 11:00 EDT | 05-19-2020 11:05 EDT | 714.200 | |----------------------|----------------------|---------| | 05-19-2020 11:05 EDT | 05-19-2020 11:10 EDT | 714.200 | | 05-19-2020 11:10 EDT | 05-19-2020 11:15 EDT | 714.200 | | 05-19-2020 11:15 EDT | 05-19-2020 11:20 EDT | 714.200 | | 05-19-2020 11:20 EDT | 05-19-2020 11:25 EDT | 714.200 | | 05-19-2020 11:25 EDT | 05-19-2020 11:30 EDT | 714.200 | | 05-19-2020 11:30 EDT | 05-19-2020 11:35 EDT | 714.200 | | 05-19-2020 11:35 EDT | 05-19-2020 11:40 EDT | 714.200 | | 05-19-2020 11:40 EDT | 05-19-2020 11:45 EDT | 714.200 | | 05-19-2020 11:45 EDT | 05-19-2020 11:50 EDT | 714.200 | | 05-19-2020 11:50 EDT | 05-19-2020 11:55 EDT | 714.200 | | 05-19-2020 11:55 EDT | 05-19-2020 12:00 EDT | 714.200 | Realtime Point ID: 99096 MHM12 SCR Inlet Temperature | Start Time | End Time | Value/Average (Deg F) | |----------------------|----------------------|-----------------------| | 05-19-2020 11:45 EDT | 05-19-2020 11:50 EDT | 752.611 | | 05-19-2020 11:50 EDT | 05-19-2020 11:55 EDT | 737.631 | | 05-19-2020 11:55 EDT | 05-19-2020 12:00 EDT | 747.554 | | 05-19-2020 12:00 EDT | 05-19-2020 12:05 EDT | 727.173 | | 05-19-2020 12:05 EDT | 05-19-2020 12:10 EDT | 724.004 | | 05-19-2020 12:10 EDT | 05-19-2020 12:15 EDT | 721.853 | | 05-19-2020 12:15 EDT | 05-19-2020 12:20 EDT | 721.400 | | 05-19-2020 12:20 EDT | 05-19-2020 12:25 EDT | 720.359 | | 05-19-2020 12:25 EDT | 05-19-2020 12:30 EDT | 719.600 | | 05-19-2020 12:30 EDT | 05-19-2020 12:35 EDT | 719.600 | | 05-19-2020 12:35 EDT | 05-19-2020 12:40 EDT | 718.373 | | 05-19-2020 12:40 EDT | 05-19-2020 12:45 EDT | 717.800 | | 05-19-2020 12:45 EDT | 05-19-2020 12:50 EDT | 717.472 | | 05-19-2020 12:50 EDT | 05-19-2020 12:55 EDT | 717.218 | | 05-19-2020 12:55 EDT | 05-19-2020 13:00 EDT | 716.357 | | 05-19-2020 13:00 EDT | 05-19-2020 13:05 EDT | 716.000 | | 05-19-2020 13:05 EDT | 05-19-2020 13:10 EDT | 716.000 | | 05-19-2020 13:10 EDT | 05-19-2020 13:15 EDT | 716.027 | | 05-19-2020 13:15 EDT | 05-19-2020 13:20 EDT | 716.000 | | 05-19-2020 13:20 EDT | 05-19-2020 13:25 EDT | 716.000 | | 05-19-2020 13:25 EDT | 05-19-2020 13:30 EDT | 716.000 | | 05-19-2020 13:30 EDT | 05-19-2020 13:35 EDT | 716.000 | | 05-19-2020 13:35 EDT | 05-19-2020 13:40 EDT | 716.000 | | 05-19-2020 13:40 EDT | 05-19-2020 13:45 EDT | 716.000 | | 05-19-2020 13:45 EDT | 05-19-2020 13:50 EDT | 716.000 | | 05-19-2020 13:50 EDT | 05-19-2020 13:55 EDT | 716.000 | | 05-19-2020 13:55 EDT | 05-19-2020 14:00 EDT | 716.000 | | 05-19-2020 14:00 EDT | 05-19-2020 14:05 EDT | 715.826 | | 05-19-2020 14:05 EDT | 05-19-2020 14:10 EDT | 715.617 | | 05-19-2020 14:10 EDT | 05-19-2020 14:15 EDT | 715.792 | | 05-19-2020 14:15 EDT | 05-19-2020 14:20 EDT | 714.323 | | 05-19-2020 14:20 EDT | 05-19-2020 14:25 EDT | 714.228 | | 05-19-2020 14:25 EDT | 05-19-2020 14:30 EDT | 714.200 | | 05-19-2020 14:30 EDT | 05-19-2020 14:35 EDT | 714.223 | | 05-19-2020 14:35 EDT | 05-19-2020 14:40 EDT | 715.843 | | 05-19-2020 14:40 EDT | 05-19-2020 14:45 EDT | 715.618 | | 05-19-2020 14:45 EDT | 05-19-2020 14:50 EDT | 714.200 | | 05-19-2020 14:50 EDT | 05-19-2020 14:55 EDT | 714.200 | | 05-19-2020 14:55 EDT | 05-19-2020 15:00 EDT | 714.200 | | 05-19-2020 15:00 EDT | 05-19-2020 15:05 EDT | 714.220 | | 05-19-2020 15:05 EDT | 05-19-2020 15:10 EDT | 714.238 | | 05-19-2020 15:10 EDT | 05-19-2020 15:15 EDT | 714.200 | | 05-19-2020 15:15 EDT | 05-19-2020 15:20 EDT | 714.200 | |----------------------|----------------------|---------| | 05-19-2020 15:20 EDT | 05-19-2020 15:25 EDT | 714.200 | | 05-19-2020 15:25 EDT | 05-19-2020 15:30 EDT | 714.200 | | 05-19-2020 15:30 EDT | 05-19-2020 15:35 EDT | 714.200 | | 05-19-2020 15:35 EDT | 05-19-2020 15:40 EDT | 714.543 | | 05-19-2020 15:40 EDT | 05-19-2020 15:45 EDT | 715.925 | | 05-19-2020 15:45 EDT | 05-19-2020 15:50 EDT | 715.854 | | 05-19-2020 15:50 EDT | 05-19-2020 15:55 EDT | 716.000 | | 05-19-2020 15:55 EDT | 05-19-2020 16:00 EDT | 716.000 | Realtime Point ID: 99299 MHM13 SCR Inlet Temperature | Start Time | ı | End Time | , | Value/Average (Deg F) | |------------------|-----|------------------|-----|-----------------------| | 05-20-2020 07:00 | EDT | 05-20-2020 07:05 | EDT | 714.200 | | 05-20-2020 07:05 | EDT | 05-20-2020 07:10 | EDT | 715.384 | | 05-20-2020 07:10 | EDT | 05-20-2020 07:15 | EDT | 716.000 | | 05-20-2020 07:15 | EDT | 05-20-2020 07:20 | EDT | 717.214 | | 05-20-2020 07:20 | EDT | 05-20-2020 07:25 | EDT | 717.800 | | 05-20-2020 07:25 | EDT | 05-20-2020 07:30 | EDT | 717.800 | | 05-20-2020 07:30 | EDT | 05-20-2020 07:35 | EDT | 717.800 | | 05-20-2020 07:35 | EDT | 05-20-2020 07:40 | EDT | 717.800 | | 05-20-2020 07:40 | EDT | 05-20-2020 07:45 | EDT | 717.800 | | 05-20-2020 07:45 | EDT | 05-20-2020 07:50 | EDT | 717.800 | | 05-20-2020 07:50 | EDT | 05-20-2020 07:55 | EDT | 717.800 | | 05-20-2020 07:55 | EDT | 05-20-2020 08:00 | EDT | 717.627 | | 05-20-2020 08:00 | EDT | 05-20-2020 08:05 | EDT | 716.907 | | 05-20-2020 08:05 | EDT | 05-20-2020 08:10 | EDT | 716.214 | | 05-20-2020 08:10 | EDT | 05-20-2020 08:15 | EDT | 716.000 | | 05-20-2020 08:15 | EDT | 05-20-2020 08:20 | EDT | 715.890 | | 05-20-2020 08:20 | EDT | 05-20-2020 08:25 | EDT | 715.101 | | 05-20-2020 08:25 | EDT | 05-20-2020 08:30 | EDT | 714.962 | | 05-20-2020 08:30 | EDT | 05-20-2020 08:35 | EDT | 715.031 | | 05-20-2020 08:35 | EDT | 05-20-2020 08:40 | EDT | 714.747 | | 05-20-2020 08:40 | EDT | 05-20-2020 08:45 | EDT | 715.842 | | 05-20-2020 08:45 | EDT | 05-20-2020 08:50 | EDT | 715.255 | | 05-20-2020 08:50 | EDT | 05-20-2020 08:55 | EDT | 714.200 | | 05-20-2020 08:55 | EDT | 05-20-2020 09:00 | EDT | 714.200 | | 05-20-2020 09:00 | EDT | 05-20-2020 09:05 | EDT | 714.140 | | 05-20-2020 09:05 | EDT | 05-20-2020 09:10 | EDT | 712.796 | | 05-20-2020 09:10 | EDT | 05-20-2020 09:15 | EDT | 713.000 | | 05-20-2020 09:15 | EDT | 05-20-2020 09:20 | EDT | 712.400 | | 05-20-2020 09:20 | EDT | 05-20-2020 09:25 | EDT | 712.400 | | 05-20-2020 09:25 | EDT | 05-20-2020 09:30 | EDT | 712.400 | | 05-20-2020 09:30 | EDT | 05-20-2020 09:35 | EDT | 712.400 | | 05-20-2020 09:35 | EDT | 05-20-2020 09:40 | EDT | 712.400 | | 05-20-2020 09:40 | EDT | 05-20-2020 09:45 | EDT | 712.400 | | 05-20-2020 09:45 | EDT | 05-20-2020 09:50 | EDT | 712.400 | | 05-20-2020 09:50 | EDT | 05-20-2020 09:55 | EDT | 711.532 | | 05-20-2020 09:55 | EDT | 05-20-2020 10:00 | EDT | 710.600 | | 05-20-2020 10:00 | EDT | 05-20-2020 10:05 | EDT | 710.647 | | 05-20-2020 10:05 | EDT | 05-20-2020 10:10 | EDT | 710.670 | | 05-20-2020 10:10 | EDT | 05-20-2020 10:15 | EDT | 710.600 | | 05-20-2020 10:15 | EDT | 05-20-2020 10:20 | EDT | 710.600 | | 05-20-2020 10:20 | EDT | 05-20-2020 10:25 | EDT | 710.600 | | 05-20-2020 10:25 | EDT | 05-20-2020 10:30 | EDT | 711.226 | | 05-20-2020 10:30 | EDT | 05-20-2020 10:35 | EDT | 711.130 | |------------------|-----|------------------|-----|---------| | 05-20-2020 10:35 | EDT | 05-20-2020 10:40 | EDT | 710.646 | | 05-20-2020 10:40 | EDT | 05-20-2020 10:45 | EDT | 710.600 | | 05-20-2020 10:45 | EDT | 05-20-2020 10:50 | EDT | 710.600 | | 05-20-2020 10:50 | EDT | 05-20-2020 10:55 | EDT | 710.600 | | 05-20-2020 10:55 | EDT | 05-20-2020 11:00 | EDT | 710.600 | | 05-20-2020 11:00 | EDT | 05-20-2020 11:05 | EDT | 710.600 | | 05-20-2020 11:05 | EDT | 05-20-2020 11:10 | EDT | 710.600 | | 05-20-2020 11:10 | EDT | 05-20-2020 11:15 | EDT | 710.918 | | 05-20-2020 11:15 | EDT | 05-20-2020 11:20 | EDT | 710.706 | | 05-20-2020 11:20 | EDT | 05-20-2020 11:25 | EDT | 711.229 | | 05-20-2020 11:25 | EDT | 05-20-2020 11:30 | EDT | 712.400 | ## **Appendix B - Test Section Diagram** ## **GASEOUS TRAVERSE FOR ROUND DUCTS** Job: Upper Michigan Energy Resources Corporation A.J. Mihm Generating Station Date: May 19 and 20, 2020 Test Locations: EURICE1, EURICE2, EURICE 3 Outlet Ducts (identical) Duct Diameter: 5.29 Feet Duct Area: 21.979 Square Feet No. Points Across Diameter: 1 No. of Ports: 1 Port Length: 8.0 Inches ## STRATIFICATION TRAVERSE FOR ROUND DUCTS Job: Upper Michigan Energy Resources Corporation A.J. Mihm Generating Station Date: May 19 and 20, 2020 Test Locations: EURICE1, EURICE2, EURICE 3 Outlet Ducts (identical) Duct Diameter: 5.29 Feet Duct Area: 21.979 Square Feet No. Points Across Diameter: 6 No. of Ports: 2 Port Length: 8.0 Inches