

## Semiannual RICE MACT Compliance Emissions Test Report

Upper Michigan Resources Corporation
F.D. Kuester Generating Station
Permit No. 35-17
EURICE1, EURICE2, EURICE3, EURICE4, EURICE5, EURICE6,
EURICE7 Outlet Ducts
Negaunee, Michigan
October 1 and 2, 2019

Report Submittal Date November 12, 2019

© Copyright 2019 All rights reserved in Mostardi Platt

Project No. M193805

|  | * |
|--|---|
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |

# TABLE OF CONTENTS

| 1.0 EXECUTIVE SUMMARY                                                                                                                                                                                                            | 1                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.0 TEST METHODOLOGY                                                                                                                                                                                                             | 2                    |
| 3.0 TEST RESULT SUMMARIES                                                                                                                                                                                                        | 6                    |
| 4.0 CERTIFICATION                                                                                                                                                                                                                | 8                    |
| APPENDIX Appendix A – Plant Operating Data Appendix B - Test Section Diagrams Appendix C - Sample Train Diagram Appendix D - Calculation Nomenclature and Formulas Appendix E - Reference Method Test Data (Computerized Sheets) | 13<br>16<br>18<br>22 |
| Appendix F - Calibration Data                                                                                                                                                                                                    |                      |

### 1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a formaldehyde emissions test program for Upper Michigan Energy Resources Corporation (UMERC) on October 1 and 2, 2019 at F. D. Kuester Generating Station on the Reciprocating Internal Combustion Engine (EURICE) 1, EURICE2, EURICE3, EURICE4, EURICE5, EURICE6, and EURICE7 Outlet Ducts in Negaunee, Michigan. The purpose of the test program was to meet compliance demonstration requirements for emission rates in accordance with Permit to Install 35-17 and the RICE MACT 40 CFR Part 63 Subpart ZZZZ. This report summarizes the results of the test program and test methods used.

The test locations, test dates, and test parameters are summarized below.

| TEST INFORMATION                         |                 |                                                                |  |  |
|------------------------------------------|-----------------|----------------------------------------------------------------|--|--|
| Test Locations Test Date Test Parameters |                 |                                                                |  |  |
| EURICE1, 2, 3, and 4                     | October 1, 2019 | Formaldehyde (CH <sub>2</sub> O), Moisture (H <sub>2</sub> O), |  |  |
| EURICE5, 6, and 7                        | October 2, 2019 | and Oxygen (O₂)                                                |  |  |

F.D. Kuester Generating Station electric generation facility includes seven (7) Wärtsilä W18V50SG natural gas-fired, four stroke, lean burn, spark ignition reciprocating internal combustion engines (RICE) coupled to 19,260 kW electric generators, a 1,000 kW natural gas-fired emergency generator, and one natural gas-fired natural gas conditioning heater. The RICE electric generating unit engines utilize pipeline quality natural gas and are equipped with selective catalytic reduction (SCR) for nitrogen oxides (NOx) control and oxidation catalyst systems for carbon monoxide (CO), volatile organic compound (VOC), and organic hazardous air pollutant (HAP) control. Each RICE electric generating unit exhausts into an individual stack.

Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

| TEST RESULTS  |                |                               |                                 |  |  |  |
|---------------|----------------|-------------------------------|---------------------------------|--|--|--|
|               |                |                               |                                 |  |  |  |
| Test Location | Test Parameter | Emission Limit                | Actual Test Result              |  |  |  |
| EURICE1       |                |                               | 0.66 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE2       | CH₂O           |                               | 0.23 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE3       |                |                               | 0.59 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE4       |                | 14 ppmvd @ 15% O <sub>2</sub> | 0.08 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE5       |                |                               | 0.68 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE6       |                |                               | 0.19 ppmvd @ 15% O <sub>2</sub> |  |  |  |
| EURICE7       |                |                               | 0.70 ppmvd @ 15% O <sub>2</sub> |  |  |  |

Operating Data as provided by the plant is included in Appendix A.

The identifications of the individuals associated with the test program are summarized below.

|                                      | TEST PERSONNEL INFORMATION                                                                                                           |                                                                            |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Location                             | Address                                                                                                                              | Contact                                                                    |  |  |  |
| Test<br>Coordinator                  | WEC Energy Group, Inc<br>231 W. Michigan Street<br>Milwaukee, Wisconsin 53203                                                        | Mr. Justin Kowalski<br>Senior Environmental Consultant<br>414-221-2265     |  |  |  |
| Test Facility                        | Upper Michigan Energy Resources<br>Corporation<br>F.D. Kuester Generating Station<br>80 Eagle Mills Road<br>Negaunee, Michigan 49866 | justin.kowalski@wecenergygroup.com                                         |  |  |  |
| Testing<br>Company<br>Representative | Mostardi Platt<br>888 Industrial Drive<br>Elmhurst, Illinois 60126                                                                   | Mr. Stuart Sands Project Manager (630) 993-2100 (phone) ssands@mp-mail.com |  |  |  |

The test crew consisted Messrs. N. Colangelo, J. Carlson, M. Lipinski, E. Ehlers, and S. Sands of Mostardi Platt.

#### 2.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40CFR60, Appendix A and 40CFR63, Appendix A. Schematics of the test section diagrams and sampling trains used are included in Appendix B and C, respectively. Calculation nomenclature and example calculations are included in Appendix D. Reference method test data can be found in Appendix E.

The following methodology was used during the test program:

## Method 3A Oxygen (O<sub>2</sub>) Determination

Oxygen  $(O_2)$  concentrations were measured to determine emission concentrations in ppmvd corrected to 15%  $O_2$  in accordance with Method 3A. Servomex analyzers were used to determine flue gas oxygen. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix F and copies of gas cylinder certifications are included in Appendix G.

## Method 320 Formaldehyde (CH<sub>2</sub>O) and Moisture (H<sub>2</sub>O) Determination

FTIR data was collected using an MKS MultiGas 2030 FTIR spectrometer.

The FTIR was equipped with a temperature-controlled, 5.11 meter multi-pass gas cell maintained at 191°C. Gas flows and sampling system pressures were monitored using a rotameter and pressure transducer. All data was collected at 0.5 cm<sup>-1</sup> resolution. Each spectrum was derived from the coaddition of 62 scans, with a new data point generated approximately every one minute. Analyzer data for each run is present is Appendix E.

| SAMPLING SYSTEM PARAMETERS |                                                                                       |                            |                                             |       |  |  |
|----------------------------|---------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|-------|--|--|
| MKS Serial<br>#            | MKS Serial Sampling Line Probe Particulate Filter Operating Assembly Media Temperatur |                            |                                             |       |  |  |
| 110161896/<br>018190669    | 100' 3/8" dia., heated<br>Teflon                                                      | Heated 3', 3/8"<br>dia. SS | 0.01μ heated<br>borosilicate glass<br>fiber | 191°C |  |  |

QA/QC procedures followed US EPA Method 320. See below for QA/QC procedure details and list of calibration gas standards. All calibration gases were introduced to the analyzer and the sampling system using an instrument grade stainless steel rotameter. All QA/QC procedures were within the acceptance criteria allowance of the applicable EPA methodology. See Appendix F for FTIR QA/QC Data.

|                                                              | FTIR QA/QC PROCEDURES                                                                                                    |                                   |                                                                   |                               |                                    |        |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|-------------------------------|------------------------------------|--------|--|
| QA/QC<br>Specification                                       | Purpose                                                                                                                  | Calibration<br>Gas Analyte        | Delivery                                                          | Frequency                     | Acceptance<br>Criteria             | Result |  |
| M320: Zero                                                   | Verify that the FTIR is free of contaminants & zero the FTIR                                                             | Nitrogen<br>(zero)                | Direct to<br>FTIR                                                 | pre/post test                 | < MDL or<br>Noise                  | Pass   |  |
| M320:<br>Calibration<br>Transfer<br>Standard<br>(CTS) Direct | Verify FTIR stability,<br>confirm optical path<br>length                                                                 | Ethylene                          | Direct to<br>FTIR                                                 | pretest                       | +/- 5% cert.<br>value              | Pass   |  |
| M320: Analyte<br>Direct                                      | Verify FTIR calibration                                                                                                  | Acetaldehyde,<br>Methanol,<br>SF6 | Direct to<br>FTIR                                                 | pretest                       | +/- 5% cert.<br>value              | Pass   |  |
| M320: CTS<br>Response                                        | Verify system<br>stability, recovery,<br>response time                                                                   | Ethylene                          | Sampling<br>System                                                | Daily,<br>pre/post test       | +/- 5% of<br>Direct<br>Measurement | Pass   |  |
| M320: Zero<br>Response                                       | Verify system is free<br>of contaminants,<br>system bias                                                                 | Nitrogen<br>(zero)                | Sampling<br>System                                                | pretest                       | Bias correct<br>data               | Pass   |  |
| M320: Analyte<br>Spike                                       | Verify system ability<br>to deliver and<br>quantify analyte of<br>interest in the<br>presence of other<br>effluent gases | Acetaldehyde,<br>Methanol,<br>SF6 | Dynamic<br>Addition to<br>Sampling<br>System,<br>1:10<br>effluent | Throughout<br>testing – daily | +/- 30%<br>theoretical<br>recovery | Pass   |  |

Note: The determined concentrations from direct analyses were used in all system/spike recovery calculations.

| CALIBRATION GAS STANDARDS                        |                       |        |          |                                                                        |  |
|--------------------------------------------------|-----------------------|--------|----------|------------------------------------------------------------------------|--|
| Components (ppm) Vendor Cylinder # Standard Type |                       |        |          |                                                                        |  |
| Ethylene                                         | 100.0                 | Airgas | CC477903 | Primary +/- 2%                                                         |  |
| Acetaldehyde/<br>Methanol/SF6                    | 201.1/212.1/<br>5.099 | Airgas | CC718237 | Certified Standard-Spec +/- 2%<br>Certified Standard-Spec +/- 5% (SF6) |  |
| Nitrogen                                         | Zero Gas              | Airgas | N/A      | UHP Grade                                                              |  |

#### **Analyte Spiking**

Acetaldehyde and methanol spiking was performed prior to testing to verify the ability of the sampling system to quantitatively deliver a sample containing acetaldehyde and methanol from the base of the probe to the FTIR. Analyte spiking assures the ability of the FTIR sampling system to recover volatile organics in the presence of effluent gas.

As part of the spiking procedure, samples were measured to determine native acetaldehyde and methanol concentrations to be used in the spike recovery calculations. The analyte spiking gases contained a low concentration of sulfur hexafluoride ( $SF_6$ ). The determined  $SF_6$  concentration in the spiked sample was used to calculate the dilution factor of the spike and thus used to calculate the concentration of the spiked Acetaldehyde and methanol. The spike target dilution ratio was 1:10 or less.

The following equation illustrates the percent recovery calculation.

$$DF = \frac{SF6(spk)}{SF6(direct)}$$
 (Sec. 9.2.3 (3) USEPA Method 320)

$$CS = DF * Spike(dir) + Unspike(1 - DF)$$
 (Sec. 9.2.3 (4) USEPA Method 320)

DF = Dilution factor of the spike gas

SF<sub>6(dir)</sub> = SF<sub>6</sub> concentration measured directly in undiluted spike gas

SF<sub>6(spk)</sub> = Diluted SF<sub>6</sub> concentration measured in a spiked sample

Spikedir = Concentration of the analyte in the spike standard measure by the FTIR directly

CS = Expected concentration of the spiked samples

Unspike = Native concentration of analytes in unspiked samples

#### Post Collection Data Validation

As part of the data validation procedure, reference spectra are manually fit to that of the sample spectra and a concentration is determined. The reference spectra are scaled to match the peak amplitude of the sample, thus providing a scale factor. The scale factor multiplied by the reference spectra concentration is used to determine the concentration value for the sample spectra. Sample pressure and temperature corrections are then applied to compute the final sample concentration. The manually calculated results are then compared with the software-generated results. The data is then validated if the two concentrations are within ± 20% agreement. If there is a difference greater than ± 20% the spectra are reviewed for possible spectra interferences or any other possible causes leading to incorrectly quantified data.

#### **Detection Limit**

The detection limit of each analyte was calculated following Annex A2 of ASTM D6348-12 procedure using spectra that contained similar amounts of moisture and carbon dioxide.

| Analyte      | Detection Limit<br>(ppmv wet) | Detection Limit<br>(%v) |
|--------------|-------------------------------|-------------------------|
| Formaldehyde | 0.2                           | -                       |
| Moisture     | -                             | 0.1                     |

QA/QC data are found in Appendix F. Copies of gas cylinder certifications are found in Appendix G. All concentration data were recorded on a wet, volume basis. The sample and data collection followed the procedures outlined in Method 320.

# **3.0 TEST RESULT SUMMARIES**

|                                                           |          |                        |            |                   |                  | Upper    | Michigan Energ  | y Resources Corp  | oration                      |              |            |               |
|-----------------------------------------------------------|----------|------------------------|------------|-------------------|------------------|----------|-----------------|-------------------|------------------------------|--------------|------------|---------------|
|                                                           |          |                        |            |                   |                  |          | F. D. Kuester G | enerating Station |                              |              |            |               |
|                                                           |          |                        |            |                   |                  |          | EURICE1         | Outlet Duct       |                              |              |            |               |
| Test                                                      | Data     | Start                  | End        | H <sub>2</sub> O% | O <sub>2</sub> % | O₂%, dry | Formaldehyde,   | Formaldehyde,     | Formaldehyde,<br>ppmvd @ 15% | Formaldehyde | Heat Input | Formaldehyde, |
| No.                                                       | I Data I | Time H <sub>2</sub> U% | Correction | on   0276, 019    | ppmvw            | ppmvd    | O <sub>2</sub>  | lb/mmBtu          | mmBtu/hr                     | lb/hr        |            |               |
| 1                                                         | 10/01/19 | 09:28                  | 10:30      | 10.33             | 15.0             | 11.6     | 0.90            | 1.01              | 0.64                         | 0.0015       | 169.78     | 0.26          |
| 2                                                         | 10/01/19 | 10:46                  | 11:47      | 10.23             | 15.0             | 11.6     | 0.89            | 0.99              | 0.63                         | 0.0015       | 169.83     | 0.26          |
| 3                                                         | 10/01/19 | 12:01                  | 13:03      | 10.29             | 15.0             | 11.6     | 1.01            | 1.12              | 0.71                         | 0.0017       | 169.78     | 0.29          |
| Average 10.28 15.0 11.6 0.93 1.04 0.66 0.0016 169.79 0.27 |          |                        |            |                   |                  |          |                 |                   |                              |              |            |               |

|                             |          |           |        |                   |                        | Upper   | Michigan Energy  | Resources Corpo  | ration                       |              |            |               |
|-----------------------------|----------|-----------|--------|-------------------|------------------------|---------|------------------|------------------|------------------------------|--------------|------------|---------------|
| l                           |          |           |        |                   |                        |         | F. D. Kuester Ge | nerating Station |                              |              |            |               |
|                             |          |           |        |                   |                        |         | EURICE 2 C       | outlet Duct      |                              |              |            |               |
| Test                        | Date     | Start     | End    | H <sub>2</sub> O% | O <sub>2</sub> %       | O₂% dry | Formaldehyde,    | Formaldehyde,    | Formaldehyde,<br>ppmvd @ 15% | Formaldehyde | Heat Input | Formaldehyde, |
| No.                         | ( Date ) | Time Time | 112070 | Correction        | O <sub>2</sub> 76, diy | ppmvw   | ppmvd            | O <sub>2</sub>   | lb/mmBtu                     | mmBtu/hr     | lb/hr      |               |
| 1                           | 10/01/19 | 10:14     | 11:34  | 9.79              | 15.0                   | 11.4    | 0.40             | 0.44             | 0.27                         | 0.0007       | 167.55     | 0.11          |
| 2                           | 10/01/19 | 11:53     | 12:55  | 9.55              | 15.0                   | 11.3    | 0.26             | 0.28             | 0.17                         | 0.0004       | 167.38     | 0.07          |
| 3                           | 10/01/19 | 13:07     | 14:09  | 9.71              | 15.0                   | 11.3    | 0.36             | 0.40             | 0.25                         | 0.0006       | 167.40     | 0.10          |
| Average 9.68 15.0 11.3 0.34 |          |           |        |                   |                        |         | 0.34             | 0.37             | 0.23                         | 0.0006       | 167.44     | 0.09          |

|      | Upper Michigan Energy Resources Corporation |       |       |                   |                  |                        |                   |                  |                              |              |            |               |  |
|------|---------------------------------------------|-------|-------|-------------------|------------------|------------------------|-------------------|------------------|------------------------------|--------------|------------|---------------|--|
| 1    |                                             |       |       |                   |                  |                        | F. D. Kuester Ger | nerating Station |                              |              |            |               |  |
|      |                                             |       |       |                   |                  |                        | EURICE3 O         | utlet Duct       |                              |              |            |               |  |
| Test | Date                                        | Start | End   | H <sub>2</sub> O% | O <sub>2</sub> % | O₂%, dry               | Formaldehyde,     | Formaldehyde,    | Formaldehyde,<br>ppmvd @ 15% | Formaldehyde | Heat Input | Formaldehyde, |  |
| No.  | Date                                        | Time  | Time  | 112078            | Correction       | O <sub>2</sub> /6, diy | ppmvw             | ppmvd            | O <sub>2</sub>               | lb/mmBtu     | mmBtu/hr   | lb/hr         |  |
| 1    | 10/01/19                                    | 14:17 | 15:17 | 10.38             | 15.0             | 11.2                   | 0.95              | 1.06             | 0.65                         | 0.0016       | 169.40     | 0.26          |  |
| 2    | 10/01/19                                    | 15:32 | 16:34 | 10.40             | 15.0             | 11.2                   | 0.86              | 0.96             | 0.59                         | 0.0014       | 169.20     | 0.24          |  |
| 3    | 10/01/19                                    | 16:49 | 17:50 | 10.36             | 15.0             | 11.2                   | 0.78              | 0.87             | 0.53                         | 0.0013       | 169.10     | 0.22          |  |
|      | Aver                                        | age   |       | 10.38             | 15.0             | 11.2                   | 0.87              | 0.97             | 0.59                         | 0.0014       | 169.23     | 0.24          |  |

|      | Upper Michigan Energy Resources Corporation                                                                                       |       |       |        |                  |                        |               |               |                              |              |            |               |
|------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|------------------|------------------------|---------------|---------------|------------------------------|--------------|------------|---------------|
|      | F. D. Kuester Generating Station                                                                                                  |       |       |        |                  |                        |               |               |                              |              |            |               |
|      |                                                                                                                                   |       |       |        |                  |                        | EURICE 4      | Outlet Duct   |                              |              |            |               |
| Test | Date                                                                                                                              | Start | End   | H₂O%   | O <sub>2</sub> % | O₂%, dry               | Formaldehyde, | Formaldehyde, | Formaldehyde,<br>ppmvd @ 15% | Formaldehyde | Heat Input | Formaldehyde, |
| No.  | Date                                                                                                                              | Time  | Time  | 112076 | Correction       | O <sub>2</sub> 76, diy | ppmvw         | ppmvd         | O <sub>2</sub>               | lb/mmBtu     | mmBtu/hr   | lb/hr         |
| 1    | 10/01/19                                                                                                                          | 15:20 | 16:20 | 10.06  | 15.0             | 11.1                   | 0.11          | 0.12          | 0.07                         | 0.0002       | 165.78     | 0.03          |
| 2    | 10/01/19                                                                                                                          | 16:35 | 17:36 | 10.07  | 15.0             | 11.1                   | 0.13          | 0.15          | 0.09                         | 0.0002       | 165.75     | 0.04          |
| 3    | 10/01/19                                                                                                                          | 17:52 | 18:52 | 9.93   | 15.0             | 11.1                   | 0.10          | 0.11          | 0.06                         | 0.0002       | 165.65     | 0.03          |
|      | Average         10.02         15.0         11.1         0.11         0.13         0.08         0.0002         165.73         0.03 |       |       |        |                  |                        |               |               |                              |              |            |               |

|      |          |       |       |                   |                  | Upper I               | Michigan Energy  | Resources Corpo  | ration         |              |            |               |
|------|----------|-------|-------|-------------------|------------------|-----------------------|------------------|------------------|----------------|--------------|------------|---------------|
| İ    |          |       |       |                   |                  |                       | F. D. Kuester Ge | nerating Station |                |              |            |               |
|      |          |       |       |                   |                  |                       | EURICE Unit      | 5 Outlet Duct    |                |              |            |               |
| Test | Date     | Start | End   | H₂O%              | O <sub>2</sub> % | O <sub>2</sub> %, dry | Formaldehyde,    | Formaldehyde,    | Formaldehyde,  | Formaldehyde | Heat Input | Formaldehyde, |
| No.  | Date     | Time  | Time  | H <sub>2</sub> U% | Correction       | 02%, dry              | ppmvw            | ppmvd            | O <sub>2</sub> | lb/mmBtu     | mmBtu/hr   | lb/hr         |
| 1    | 10/02/19 | 08:48 | 09:50 | 9.94              | 15.0             | 11.4                  | 0.98             | 1.09             | 0.68           | 0.0016       | 166.08     | 0.27          |
| 2    | 10/02/19 | 10:06 | 11:08 | 9.96              | 15.0             | 11.4                  | 0.94             | 1.04             | 0.65           | 0.0016       | 166.50     | 0.26          |
| 3    | 10/02/19 | 11:28 | 12:30 | 9.95              | 15.0             | 11.4                  | 1.02             | 1.13             | 0.70           | 0.0017       | 165.98     | 0.28          |
|      | Avei     | rage  |       | 9.95              | 15.0             | 11.4                  | 0.98             | 1.09             | 0.68           | 0.0016       | 166.18     | 0.27          |

|          | Upper Michigan Energy Resources Corporation F. D. Kuester Generating Station |       |       |            |                  |       |                 |                               |          |              |            |               |  |
|----------|------------------------------------------------------------------------------|-------|-------|------------|------------------|-------|-----------------|-------------------------------|----------|--------------|------------|---------------|--|
|          |                                                                              |       |       |            |                  |       | EURICE Unit 6 C | Outlet Duct                   |          |              |            |               |  |
| Test     | 5-4-                                                                         | Start | End   | 11.00/     | O <sub>2</sub> % | 0.0%  | Formaldehyde,   | Formaldehyde,                 |          | Formaldehyde | Heat Input | Formaldehyde, |  |
| I Date I |                                                                              | Time  | H₂O%  | Correction | O₂%, dry         | ppmvw | ppmvd           | ppmvd @ 15%<br>O <sub>2</sub> | lb/mmBtu | mmBtu/hr     | lb/hr      |               |  |
| 1        | 10/02/19                                                                     | 09:35 | 10:37 | 9.85       | 15.0             | 11.5  | 0.27            | 0.30                          | 0.19     | 0.0005       | 169.08     | 0.08          |  |
| 2        | 10/02/19                                                                     | 10:50 | 11:52 | 9.89       | 15.0             | 11.4  | 0.26            | 0.29                          | 0.18     | 0.0004       | 169.33     | 0.07          |  |
| 3        | 10/02/19                                                                     | 12:10 | 13:11 | 9.85       | 15.0             | 11.5  | 0.27            | 0.30                          | 0.19     | 0.0005       | 169.20     | 0.08          |  |
|          | Aver                                                                         | age   |       | 9.86       | 15.0             | 11.5  | 0.27            | 0.30                          | 0.19     | 0.0004       | 169.20     | 0.08          |  |

|      | Upper Michigan Energy Resources Corporation |       |       |                   |                  |                        |               |                  |                |              |            |               |  |
|------|---------------------------------------------|-------|-------|-------------------|------------------|------------------------|---------------|------------------|----------------|--------------|------------|---------------|--|
| 1    | F. D. Kuester Generating Station            |       |       |                   |                  |                        |               |                  |                |              |            |               |  |
|      |                                             |       |       |                   |                  |                        | EURICE Un     | it 7 Outlet Duct |                |              |            |               |  |
| Test | Date                                        | Start | End   | H <sub>2</sub> O% | O <sub>2</sub> % | O₂%, dry               | Formaldehyde, | Formaldehyde,    | Formaldehyde,  | Formaldehyde | Heat Input | Formaldehyde, |  |
| No.  | Date                                        | Time  | Time  | 112078            | Correction       | O <sub>276</sub> , ary | ppmvw         | ppmvd            | ppmvd @ 15% O₂ | lb/mmBtu     | mmBtu/hr   | lb/hr         |  |
| 1    | 10/02/19                                    | 13:58 | 15:00 | 9.91              | 15.0             | 11.4                   | 1.07          | 1.19             | 0.74           | 0.0018       | 165.80     | 0.29          |  |
| 2    | 10/02/19                                    | 15:17 | 16:19 | 9.80              | 15.0             | 11.3                   | 0.98          | 1.08             | 0.66           | 0.0016       | 165.80     | 0.27          |  |
| 3    | 10/02/19                                    | 16:33 | 17:34 | 9.81              | 15.0             | 11.4                   | 1.03          | 1.14             | 0.71           | 0.0017       | 165.78     | 0.28          |  |
|      | Aver                                        | age   |       | 9.84              | 15.0             | 11.4                   | 1.03          | 1.14             | 0.70           | 0.0017       | 165.79     | 0.28          |  |

## 4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Upper Michigan Energy Resources Corporation. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

### **CERTIFICATION**

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

| SATI Suc        | Draigat Managar   |
|-----------------|-------------------|
| Stuart T. Sands | Project Manager   |
| Scott W. Barrel |                   |
|                 | Quality Assurance |
| Scott W. Banach |                   |

# **APPENDICES**

## Appendix A – Plant Operating Data

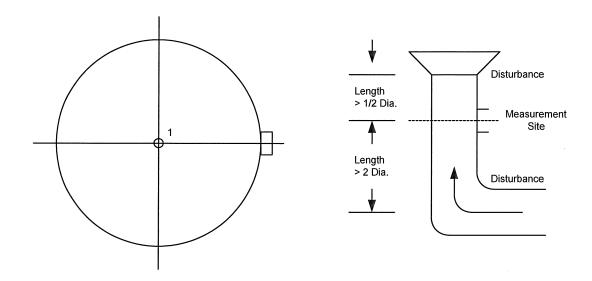
# F.D. Kuester Generating Station RICE MACT Compliance Emissions Testing Summary of Operating Data October 1 & 2, 2019

| EURICE1                                                                               |              | a ya Colean da Colean da La Col | O CHANGEL AND A MINER VINCERS WAS STORE AND | e de la Mille de modelle en en a Allago de mentre de la competició de la mastra establica en actual de la mast |
|---------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 10/1/2019                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |
| Method 3A and 320                                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |
| Start Time                                                                            | 928          | 1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1201                                        |                                                                                                                |
| End Time                                                                              | 1030         | 1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1303                                        |                                                                                                                |
|                                                                                       | Run 1        | Run 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Run 3                                       | Average                                                                                                        |
| Engine (kW)                                                                           | 18,885       | 18,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18,877                                      | 18,884                                                                                                         |
|                                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |
| Engine natural gas use (pound/hour)                                                   | 6,791        | 6,793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,791                                       | 6,792                                                                                                          |
| Engine natural gas use (pound/hour) SCR/Oxidation catalyst inlet temperature) (deg F) | 6,791<br>725 | 6,793<br>724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,791<br>724                                | 6,792<br>724                                                                                                   |

| EURICE2                                           |        |        | and the second and th |         |
|---------------------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 10/1/2019                                         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Method 3A and 320                                 |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Start Time                                        | 1014   | 1153   | 1307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| End Time                                          | 1134   | 1255   | 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|                                                   | Run 1  | Run 2  | Run 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average |
| Engine (kW)                                       | 18,868 | 18,864 | 18,868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18,867  |
| Engine natural gas use (pound/hour)               | 6,702  | 6,695  | 6,696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,698   |
| SCR/Oxidation catalyst inlet temperature) (deg F) | 729    | 730    | 728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 729     |
| Pressure drop across the oxidation catalyst (PSI) | 0.12   | 0.12   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12    |

| EURICE3                                           |        |        |        |         |
|---------------------------------------------------|--------|--------|--------|---------|
| 10/1/2019                                         |        |        |        |         |
| Method 3A and 320                                 |        |        |        |         |
| Start Time                                        | 1417   | 1532   | 1649   |         |
| End Time                                          | 1517   | 1634   | 1750   |         |
|                                                   | Run 1  | Run 2  | Run 3  | Average |
| Engine (kW)                                       | 18,875 | 18,869 | 18,875 | 18,873  |
| Engine natural gas use (pound/hour)               | 6,776  | 6,768  | 6,764  | 6,769   |
| SCR/Oxidation catalyst inlet temperature) (deg F) | 733    | 734    | 735    | 734     |
| Pressure drop across the oxidation catalyst (PSI) | 0.12   | 0.12   | 0.12   | 0.12    |

| EURICE4                                                                               |              |              |              |              |
|---------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|
| 10/1/2019                                                                             |              |              |              |              |
| Method 3A and 320                                                                     |              |              |              |              |
| Start Time                                                                            | 1520         | 1635         | 1752         |              |
| End Time                                                                              | 1620         | 1736         | 1852         |              |
|                                                                                       | Run 1        | Run 2        | Run 3        | Average      |
| Engine (kW)                                                                           | 18,872       | 18,872       | 18,874       | 18,873       |
|                                                                                       |              |              |              |              |
| Engine natural gas use (pound/hour)                                                   | 6,631        | 6,630        | 6,626        | 6,629        |
| Engine natural gas use (pound/hour) SCR/Oxidation catalyst inlet temperature) (deg F) | 6,631<br>734 | 6,630<br>734 | 6,626<br>735 | 6,629<br>734 |


| EURICE5                                           |        |        |        |         |
|---------------------------------------------------|--------|--------|--------|---------|
| 10/2/2019                                         |        |        |        |         |
| Method 3A and 320                                 |        |        |        |         |
| Start Time                                        | 848    | 1006   | 1128   |         |
| End Time                                          | 950    | 1108   | 1230   |         |
|                                                   | Run 1  | Run 2  | Run 3  | Average |
| Engine (kW)                                       | 18,874 | 18,865 | 18,871 | 18,870  |
| Engine natural gas use (pound/hour)               | 6,643  | 6,660  | 6,639  | 6,647   |
| SCR/Oxidation catalyst inlet temperature) (deg F) | 730    | 730    | 730    | 730     |
| Pressure drop across the oxidation catalyst (PSI) | 0.12   | 0.12   | 0.12   | 0.12    |

| EURICE6                                           |        |        |        |         |
|---------------------------------------------------|--------|--------|--------|---------|
| 10/2/2019                                         |        |        |        |         |
| Method 3A and 320                                 |        |        |        |         |
| Start Time                                        | 935    | 1050   | 1210   |         |
| End Time                                          | 1037   | 1152   | 1311   |         |
|                                                   | Run 1  | Run 2  | Run 3  | Average |
| Engine (kW)                                       | 18,915 | 18,915 | 18,908 | 18,913  |
| Engine natural gas use (pound/hour)               | 6,763  | 6,773  | 6,768  | 6,768   |
| SCR/Oxidation catalyst inlet temperature) (deg F) | 725    | 726    | 727    | 726     |
| Pressure drop across the oxidation catalyst (PSI) | 0.12   | 0.12   | 0.12   | 0.12    |

| EURICE7                                           |        |        |        |         |
|---------------------------------------------------|--------|--------|--------|---------|
| 10/2/2019                                         |        |        |        |         |
| Method 3A and 320                                 |        |        |        |         |
| Start Time                                        | 1358   | 1517   | 1633   |         |
| End Time                                          | 1500   | 1619   | 1734   |         |
|                                                   | Run 1  | Run 2  | Run 3  | Average |
| Engine (kW)                                       | 18,868 | 18,877 | 18,864 | 18,870  |
| Engine natural gas use (pound/hour)               | 6,632  | 6,632  | 6,631  | 6,631   |
| SCR/Oxidation catalyst inlet temperature) (deg F) | 732    | 732    | 732    | 732     |
| Pressure drop across the oxidation catalyst (PSI) | 0.11   | 0.11   | 0.11   | 0.11    |

## **Appendix B - Test Section Diagrams**

## **GASEOUS TRAVERSE FOR ROUND DUCTS**



Job: Upper Michigan Energy Resources Corporation

F.D. Kuester Generating Station

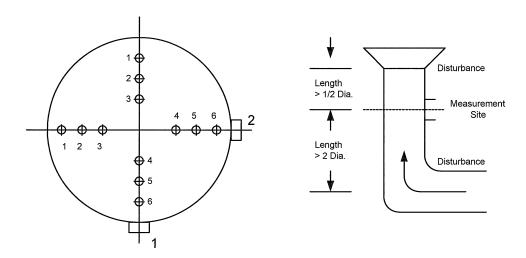
Date: October 1 and 2, 2019

Test Location: EURICE1, EURICE2, EURICE3, EURICE4, EURICE5, EURICE6,

**EURICE7 Outlet Ducts (identical)** 

Duct Diameter: 5.29 Feet

Duct Area: 21.979 Square Feet


No. Points Across Diameter: 1

No. of Ports: 1

Port Length: 8.0 Inches

### **GASEOUS TRAVERSE FOR ROUND DUCTS**

(Preliminary O<sub>2</sub> Traverse)



Job: Upper Michigan Energy Resources Corporation

F.D. Kuester Generating Station

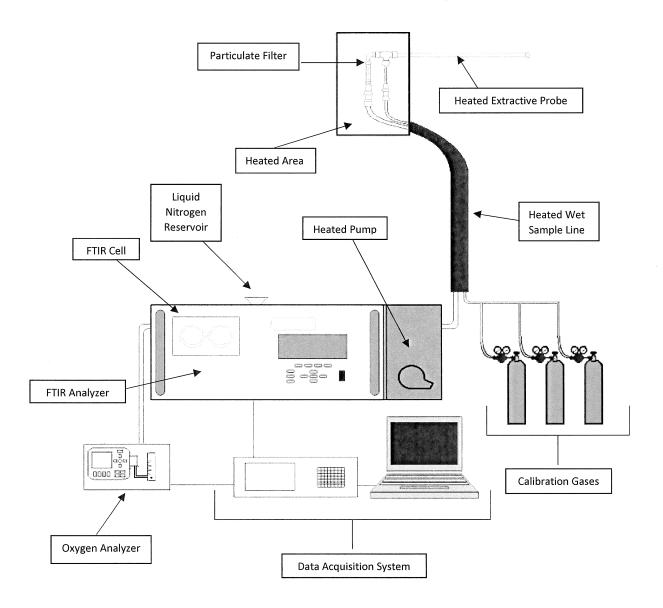
Date: October 1 and 2, 2019

Test Location: EURICE1, EURICE2, EURICE3, EURICE4, EURICE5, EURICE6,

**EURICE7 Outlet Ducts (identical)** 

Duct Diameter: 5.29 Feet

Duct Area: 21.979 Square Feet


No. Points Across Diameter: 1

No. of Ports: 1

Port Length: 8.0 Inches

## **Appendix C - Sample Train Diagram**

# **USEPA Methods 3A and 320 – Sample Train Diagram**

