CleanAir

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

AUG 1 5 2016

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

VACUUM 2 HEATER STACK (SV04-H2) CRUDE/VACUUM HEATER STACK (SV04-H1-05-H1)

Client Reference No: 4100665755 CleanAir Project No: 13019 Revision 0: August 10, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Øbuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Cett BDour

Scott Brown Quality Director sbrown@cleanair.com (800) 627-0033 ext. 4544

RPTv4_6_8.dot 13019_MPC Report_R0.doc 30102016 023000 13019

Copyright © 2016 Clean Air Engineering, Inc., Palatine, Illinois. All rights reserved.

Client Reference No: 4100665755 CleanAir Project No: 13019

ii

REVISION HISTORY

REPORT ON RATA & COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	07/15/16	All	Draft version of original document.

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	08/10/16	All	Final version of original document

Authorized I	by 1994 P.A. 451, as amende	REPORT CE	ERTIFICATION	esult in ci	vil and/or criminal pen	alties.
Reports submitted pursua must be certified by a resp for at least 5 years, as spo upon request.	nt to R 336.1213 (Rule 213) ponsible official. Additiona ecified in Rule 213(3)(b)(ii),), subrules (3)(c) al information reg and be made av	and/or (4)(c), of Michig garding the reports and ailable to the Departme	an's Reno documen ent of Env	ewable Operating Pe ntation listed below r vironmental Quality,	rmit (ROP) program nust be kept on file Air Quality Division
Source Name Marati	hon Petroleum Compa	ny LP			County _ Wayne	
Source Address _1300) South Fort Street			City	Detroit	
AQD Source ID (SRN)	A9831	ROP No.	MI-ROP-A9831- 2012b		ROP Section No.	01
Please check the appropr	riate box(es):					
Annual Compliance	e Certification (Pursuan	t to Rule 213(4)	(c))		· · · · · · · · · · · · · · · · · · ·	
Reporting period (pro	ovide inclusive dates):	From	To			
term and condition method(s) specifie	re reporting period, this so of which is identified and d in the ROP.	included by this	reference. The metho	s and co d(s) use	d to determine comp	h the ROP, each bliance is/are the
2. During the entremand condition deviation report(s) unless otherwise in	tire reporting period this s n of which is identified an . The method used to def ndicated and described on	ource was in co d included by th termine complian the enclosed do	ompliance with all term is reference, EXCEPT nce for each term and eviation report(s).	s and co for the condition	nditions contained deviations identified n is the method spec	in the ROP, each I on the enclosed cified in the ROP,
	E					
Semi-Annual (or M	lore Frequent) Report Ce	ertification (Pu	rsuant to Rule 213(3)((C))		
Reporting period (p	rovide inclusive dates):	From	То			
1. During the entideviations from the	ire reporting period, ALL nese requirements or any o	nonitoring and a ther terms or cor	ssociated recordkeepir	ng require	ements in the ROP	were met and no
2. During the enti	re reporting period, all mo	nitoring and asse	ciated recordkeeping	requirem	ents in the ROP we	re met and no
deviations from the enclosed deviation	ese requirements or any of report(s).	ther terms or co	nditions occurred, EXC	EPT for	the deviations identi	fied on the
- An and a second second second spectrum particular field for second second second second second second second	n an		ann an		202024920200000000000000000000000000000	77.1529179179189179191919191919191919191919191
🛛 Other Report Certi	fication			· •		
Reporting period (pr	ovide inclusive dates):	From 06/14	/2016 To	06/15/	2016	
Additional monitoring	g reports or other applicabl	le documents rec	quired by the ROP are	attached	as described:	
Submittal of S	Stack Test and RATA	results.				
					····	
·						
I certify that, based on i	nformation and belief for	ned after reason	nable inquiry, the state	ements a	and information in t	his report and the

David T. Roland	Deputy Assistant Secretary	313-843-9100
Name of Responsible Official (print or type)	Title	Phone Number
K S/W/		8/11/2016
Signature of Responsible Official		Date

* Photocopy this form as needed.

EQP 5736 (Rev 11-04)

RECEIVED

AUG 1 5 2016 MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

AIR QUALITY DIV.

RENEWABLE OPERATING PERMIT

Client Reference No: 4100665755 CleanAir Project No: 13019

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit refinery for relative accuracy test audit (RATA) and compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (MDEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis - MPC Joe Reidy - MPC Tom Maza – MDEQ Andy Obuchowski - CleanAir

Test Program Parameters

RECEIVED AUG 1 5 2016 AIR QUALITY DI Testing was performed at the Vacuum 2 Heater Stack (Emission Unit ID No. EU04-VAC2HTR-S1; Stack ID No. SV04-H2) on June 14, 2016, and included the following emissions measurements:

- oxygen (O₂)
- carbon dioxide (CO₂)
- nitrogen oxides (NO_X)

Testing was performed at the Crude/Vacuum Heater Stack (Emission Unit ID No. EU05-CRUDEHTR-S1 and EU04-VACHTR-S1; Common Stack ID No. SV04-H1-05-H1) on June 15, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- nitrogen oxides (NO_X)
- flue gas composition (e.g., O_2 , CO_2 , H_2O)
- flue gas flow rate

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

		Table 1-1: Schedule of Act	ivities			
Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	08:42	09:03
2	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	09:11	09:32
3	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	09:39	10:00
4	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	10:08	10:29
5	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	10:37	10:58
6	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/14/16	11:05	11:26
7	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	11:34	11:55
8	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	12:02	12:23
9	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	12:31	12:52
10	Vacuum 2 Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/14/16	13:01	13:22
1	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/15/16	10:28	13:35
2	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/15/16	14:22	16:32
3	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/15/16	17:03	19:15
1	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	08:53	09:14
2	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	10:05	10:26
3	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	10:37	10:58
4	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	11:25	11:46
5	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	11:55	12:16
6	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	12:26	12:47
7	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/15/16	12:57	13:18
8	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	13:27	13:48
9	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	13:57	14:18
10	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/15/16	14:29	14:50
1	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	06/15/16	08:53	10:58
2	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	06/15/16	11:25	12:47
3	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	06/15/16	12:57	14:18

080816 160429

Client Reference No: 4100665755 CleanAir Project No: 13019

Client Reference No: 4100665755 CleanAir Project No: 13019

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-10.

Summa	ry of Emission Complian	ce Test Results	
<u>Source</u> Constituent (Units)	Sampling Method	Average Emission	Permit Limit ¹
Crude/Vacuum Heater Stack			
PM (lb/MMBtu)	USEPA 5	0.0020	0.0019
VOC (lb/MMBtu)	USEPA 25A / 18	<7.2E-4	0,0055

Table 4 0.

¹ Permit limits obtained from MDEQ Permit To Install No. 63-08D.

Table 1-3: Summary of RATA Results

<u>Source</u> Constituent (Units)	Reference Method (USEPA)	Applicable Specification	Relative Accuracy(%) ¹	Standard Used	Specification Limit ²
Vacuum 2 Heater Stack					
O ₂ (% dv)	3A	PS3	0.2	abs. diff.	±1.0%
NO _X (ppm @ 0%O2)	7E	PS2	9.4	% of RM	20%
Crude/Vacuum Heater Stack					
O ₂ (% dv)	3A	PS3	0.01	abs. diff.	±1.0%
NO _X (Ib/MMBtu)	7E	PS2	11.2	% of RM	20%
NO _x (ppm @ 0%O2)	7E	PS2	5.9	% of RM	20%

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.).

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

080816 160429

071516 112356

Discussion of Test Program

FPM Testing - USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. Three (3) 120-minute Method 5 test runs were performed on June 15, 2016, at the Crude/Vacuum Heater Stack. The final result was expressed as the average of three (3) valid runs.

Client Reference No: 4100665755 CleanAir Project No: 13019

PROJECT OVERVIEW

1-4

O₂, NO_x, and CO Emissions / RATA Testing - USEPA Methods 3A, 7E, and 10; Performance Specifications 2, 3 and 4/4A

Minute-average data points for O_2 and NO_X were collected over a period of 21 minutes for each RATA Reference Method (RM) run. The average result for each RM run was calculated and compared to the average result from the facilities CEMS over an identical time interval in order to calculate relative accuracy (RA).

Ten (10) valid RATA test runs were performed at the Vacuum 2 Heater Stack on June 14, 2016.

Ten (10) valid RATA test runs were performed at the Crude/Vacuum Heater Stack on June 15, 2016.

The facility CEMS results as lb/MMBtu were calculated and provided by MPC along with all other applicable RATA and process data and can be found in Appendix H.

VOC Testing - USEPA Methods 25A and 18

VOC testing was performed concurrently with the RATA testing. Nine (9) 21-minute Method 25 test runs for THCs were performed concurrently with three (3) Method 18 bag collections for CH_4 and C_2H_6 , with each Method 18 sample collected over a period of about 63 minutes.

The Method 18 samples on the Crude/Vacuum Heater were collected as follows:

- Method 18 Run 1: Collected during Method 25A Runs 1, 2 and 3
- Method 18 Run 2: Collected during Method 25A Runs 4, 5 and 6
- Method 18 Run 3: Collected during Method 25A Runs 7, 8 and 9

The VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate. The calculated emission rate of CH_4 and C_2H_6 detected through analysis of each Method 18 sample bag slightly exceeded the amount of THC measured by the on-line THC analyzer.

This is likely due to variations in the calibration standards, measurement and analytical technique. Therefore, VOC emissions are reported as a value "less than" 1% of the calibration span of THC instrument. The final results were calculated using the average of three valid test runs, all using a concentration of 1% of the instrument span and reported as "less than" the amount.

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13019

PROJECT OVERVIEW

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu), where applicable, by calculating an oxygen-based fuel factor (F_d) for refinery gas per USEPA Method 19 specifications. The heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC and tabulated heating values for each of the measured constituents.

Two fuel gas analyses were performed by MPC on each test day (3:30 and 15:30). The analysis used to calculate the emissions results for each test run was selected by choosing the analysis performed nearest to each emissions test run interval.

End of Section 1 – Project Overview

Client Reference No: 4100665755 CleanAir Project No: 13019

RESULTS

2-1

	Vac. 2 Heate	T - T Stack	able 2-1: NO _X Emis	sions (US	EPA 7E)	·	
Run No.			1	2	3	4	5
Date (201	16)		Jun 14	Jun 14	Jun 14	Jun 14	Jun 14
Start Tim	e (approx.)		08:42	09:11	09:39	10:08	10:37
Stop Time	e (approx.)		09:03	09:32	10:00	10:29	10:58
Process	Conditions						
P ₁	Charge rate (BPD)		133,188	133,497	135,048	135,067	134,970
Gas Con	ditions						
O2	Oxygen (dry volume %)		5.7	6.1	5.7	5.5	5.8
CO_2	Carbon dioxide (dry volume %)		8.6	8.3	8.5	8.7	8.5
Nitrogen	Oxides Results						
C _{sd}	Concentration (ppmdv)		24.3	24.1	24.0	24.1	24.2
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)		33.4	34.0	33.0	32.7	33.4
\mathbf{C}_{sd}	Concentration (lb/dscf)		2.90E-06	2.88E-06	2.87E-06	2.88E-06	2.88E-06
			· · ·	······			
Run No.		6	7	8	9	10	Average
Date (201	6)	Jun 14	Jun 14	Jun 14	Jun 14	Jun 14	
Start Time	e (approx.)	11:05	11:34	12:02	12:31	13:01	
Stop Time	e (approx.)	11:26	11:55	12:23	12:52	13:22	
Process	Conditions						
P ₁	Charge rate (BPD)	134,205	131,871	131,454	132,898	133,926	133,612
Gas Con	ditions						
O2	Oxygen (dry volume %)	5.5	5.5	5.5	5.6	5.4	5.6
CO2	Carbon dioxide (dry volume %)	8.7	8.7	8.7	8.6	8.7	8.6
Nitrogen	Oxides Results						
C_{sd}	Concentration (ppmdv)	23.8	23.6	23.6	23.7	23.4	23.9
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	32.3	32.0	32.1	32.5	31.6	32.7
C_{sd}	Concentration (lb/dscf)	2.84E-06	2.82E-06	2.81E-06	2.84E-06	2.80E-06	2.85E-06

Average includes 10 runs

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13019

RESULTS Table 2-2: Vac. 2 Heater Stack – O₂ RATA (USEPA 3A / PS3) Start Run Date Difference Time (2016)RM Data (%dv) CEMS Data (%dv) Difference (%dv) Percent No. 1 08:42 Jun 14 5.70 5.93 -0.23 -4.0% 2 09:11 Jun 14 6.06 6.18 -0.12 -2.0% 09:39 3 Jun 14 5.69 5.84 -0.15 -2.6% 10:08 4 Jun 14 5.53 5.73 -0.20 -3.6% 5 10:37 Jun 14 5.78 5.92 -0.14 -2.4% 6 11:05 Jun 14 5.52 5.70 -0.18 -3.3% 7 11:34 Jun 14 5.505.68 -0.18 -3.3% 8 12:02 Jun 14 5.55 5.68 -0.13 -2.3% 9* 12:31 Jun 14 5.61 6.03 -0.42 -7.5% 10 13:01 Jun 14 5.40 5.51 -0.11 -2.0% 5.64 5.80 -0.16 -2.8% Average **Relative Accuracy Test Audit Results** Standard Deviation of Differences 0.040 Confidence Coefficient (CC) 0.031 t-Value for 9 Data Sets 2.306 Limit Relative Accuracy (as % of RM) 20.0% 3.4% Avg. Abs. Diff. (%dv) 0.16 1.0 RM = Reference Method (CleanAir Data) 071516 162459 CEMS = Continuous Emissions Monitoring System (Marathon Petroleum Company Data) RATA calculations are based on 9 of 10 runs. * indicates the excluded run. 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 2 1 3 5 6 7 8 9 10 4 Run Number RM Data (%dv)

- CEMS Data (%dv)

Revision 0, Final Report

(

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13019

2-3

No	Start	Date	RM Data	CEMS Data	Difference	Difference
NO.	Time	(2016)	(ppm@0%O2)	(ppm@0%O2)	(ppm@0%O2)	Percen
1	08:42	Jun 14	33.35	30.31	3.04	9.1%
2	09:11	Jun 14	33.98	30.79	3.19	9.4%
3	09:39	Jun 14	33.03	29.97	3.06	9.3%
4	10:08	Jun 14	32.75	29.91	2.84	8.7%
5	10:37	Jun 14	33.40	30.37	3.03	9.1%
6	11:05	Jun 14	32.33	29.41	2.92	9.0%
7	11:34	Jun 14	32.01	29.06	2.95	9.2%
8	12:02	Jun 14	32.07	29.00	3.07	9.6%
9*	12:31	Jun 14	32.46	28.70	3.76	11.6%
10	13:01	Jun 14	31.61	28.95	2.66	8.4%
	literage		02.110	2011 0	L,01	0.17,0
			Relative Ac	curacy Test Audit	Results	
	Stan	dard Deviat	ion of Differences	0.154		
		Confidence	e Coefficient (CC)	0.119		
		t-van	le for 9 Data Sets	2,306	1	
	Po	Jativo Acou	any (on % of PM)	0.4%	20.0%	
	Ne	alive Accu		J.4 70	2.0.0 /0	
	Relative	Accuracy (a	e % of anni Stall	7 7%	10.0%	
	Relative . Appl	Accuracy (a l. Std. = 40 ı	s % of Appl. Std.)	7.7%	10.0%	
M = 6	Relative Appl eference	Accuracy (a I. Std. = 40 j Method (Cl	s % of Appl. Std.) ppm@0%O2 eanAir Data)	7.7%	10.0%	071546 1624
M = F	Relative Appl eference = Continu	Accuracy (a l. Std. = 40 j Method (Cl ious Emissio	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste	7.7%	10.0% eum Company Data	071516 1624
M = R EMS ATA c	Relative Appl eference = Continu alculation	Accuracy (a I. Std. = 40 j Method (Cl lous Emissions are based	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624)
M = R EMS ATA c	Relative Appl Appl eference Continu calculation	Accuracy (a i. Std. = 40 j Method (Cl lous Emissions are base	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624)
M = R EMS ATA c 40	Relative Appp eference = Continu calculation	Accuracy (a i. Std. = 40 p Method (Cl- lous Emissions are base	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624)
M = R EMS ATA c 40 35	Relative Apple eference Continu- calculation	Accuracy (a i. Std. = 40 µ Method (Cl lous Emission ns are base	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624)
M = R EMS ATA c 40 35	Relative Apple	Accuracy (a i. Std. = 40 p Method (Cl ious Emission ns are base	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624
M = R EMS ATA c 40 35 30 25	Applicative Application	Accuracy (a i. Std. = 40 j Method (Ci ious Emissions are based	s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624
M = R EMS ATA c 35 30 25	Appl eference = Continu alculation	Accuracy (a i. Std. = 40 µ Method (Cl lous Emission ns are based	s % of Appl. Std.) ppm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624
M = R EMS ATA c 35 30 25 20	Applicative Application	Accuracy (a i. Std. = 40 j Method (Cl ious Emissic s are base	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624
M = R EMS 40 35 30 25 20 15	Relative Application teference = Continue alculation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Accuracy (a i. Std. = 40 j Method (Cl ious Emission is are based	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624
M = R EMS 400 355 300 25 20 15 10	Relative Application (eference = Continu calculation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Accuracy (a i. Std. = 40 µ Method (Cl ious Emission is are based	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624
M = R EMS ATA c 40 35 30 25 20 15 10 5	Relative Appl ieference Continu alculation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Accuracy (a i. Std. = 40 j Method (Cl ious Emission is are base	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ad run.	071516 1624
M = R EMS ATA c 40 35 30 25 20 15 10 5 0	Relative Apple Leference Continu alculation .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Accuracy (a i. Std. = 40 p Method (Cl ious Emissic is are based	s % of Appl. Std.) ppm@0%O2 eanAir Data) pns Monitoring Syste d on 9 of 10 runs. * i	7.7% em (Marathon Petrole ndicates the exclude	10.0% eum Company Data ed run.	071516 1624

Ć

Client Reference No: 4100665755 CleanAir Project No: 13019

RESULTS

2-4

	Tab Crude/Vac. Heater Stack -	le 2-4: - FPM Emission	s (USEPA	5)	
Run No).	1	2	3	Average
Date (2	016)	Jun 15	Jun 15	Jun 15	
Start Ti	me (approx.)	10:28	14:22	17:03	
Stop Tir	me (approx.)	13:35	16:32	19:45	
Proces	s Conditions				
P ₁	Charge rate (BPD)	134,594	132,073	133,993	133,553
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,123	8,123	8,123	8,123
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	8.6	8.5	9.0	8.7
CO_2	Carbon dioxide (dry volume %)	6.5	6.8	6.1	6.5
Тs	Sample temperature (°F)	290	288	289	289
Bw	Actual water vapor in gas (% by volume)	13.4	14.1	14.0	13.9
Gas Flo	ow Rate				
$\mathbf{Q}_{\mathbf{a}}$	Volumetric flow rate, actual (acfm)	93,800	84,700	92,600	90,400
Q_s	Volumetric flow rate, standard (scfm)	64,300	58,200	63,500	62,000
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	55,700	50,000	54,600	53,400
Q_s	Volumetric flow rate, standard (scf/hr)	3,860,000	3,490,000	3,810,000	3,720,000
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	3,340,000	3,000,000	3,280,000	3,210,000
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	67.98	61.75	66.80	65.51
%I	Isokinetic sampling (%)	97.8	98.9	97.9	98.2
Laborat	tory Data				
mn	Total FPM (g)	0.00475	0.00317	0.00504	
DLC	Detection level classification	ADL	ADL	ADL	
FPM Re	sults				
C _{sd}	Particulate Concentration (lb/dscf)	1.54E-07	1.13E-07	1.66E-07	1.45E-07
Elb/hr	Particulate Rate (lb/hr)	0.515	0.340	0,545	0.466
E _{T/yr}	Particulate Rate (Ton/yr)	2.25	1.49	2.39	2.04
E _{Fd}	Particulate Rate - F _d -based (Ib/MMBtu)	0.00213	0.00155	0.00237	0.00202

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

071516 141728

ĺ

Client Reference No: 4100665755 CleanAir Project No: 13019

2-5

			Та	ble 2-5:			
		Crude/Vac. Heat	er Uncerta	iinty Analysis – F	PM (USEP	A 5)	
		FPM Results (Ib/MMBtu)		FPM Results (lb/hr)		FPM Results (Ton/yr)	
Method		5		5		5	
Run No.	1	0.00213	1	0.515	1	2,25	
	2	0.00155	2	0.340	2	1.49	
	3	0.00237	3	0.545	3	2.39	
SD		4.23E-04		0.1109		0.486	
AVG		2.02E-03		0.466		2.04	
RSD		21.0%		23.8%		23.8%	
N		3		3		3	
SE		2.44E-04		0.0640		0.280	
RSE		12.1%		13.7%		13.7%	
Р		95.0%		95.0%		95.0%	
TINV		4.303		4.30		4.30	
CI +		0.00307		0.742		3.25	
AVG		0.00202		0.466		2.04	
CI -		9.67E-04		0.191		0.84	
тв +		0.00525		1.32		5.76	

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 13019

NEGULIO

2-6

	Tab Crude/Vac. Heater – THC, CH₄, C₂⊦	le 2-6: I ₆ & VOC Emi:	ssions (US	EPA 25A/18)
Run No.		1	2	3	Average
Date (20	16)	Jun 15	Jun 15	Jun 15	
Start Tim	e (approx.)	08:53	11:25	12:57	
Stop Tim	e (approx.)	10:58	12:47	14:18	
Process	Conditions				
P ₁	Charge rate (BPD)	134,663	134,665	136,095	135,141
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,123	8,123	8,123	8,123
Gas Con	ditions				
O ₂	Oxygen (dry volume %)	8.7	8.6	8.4	8.6
CO_2	Carbon dioxide (dry volume %)	6.6	6.8	7.0	6.8
Bw	Actual water vapor in gas (% by volume) ¹	13.4	13.4	13.4	13.4
THC Res	sults				
C _{sd}	Concentration (ppmdv as C ₃ H ₈)	0.220	0.217	0.224	0.220
C _{sd}	Concentration (lb/dscf)	2.52E-08	2.49E-08	2.56E-08	2.52E-08
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	3.52E-04	3.42E-04	3.48E-04	3.47E-04
Methane	Results				
C _{sd}	Concentration (ppmdv)	1.300	1.250	1.270	1.273
C _{sd}	Concentration (lb/dscf)	5.41E-08	5.20E-08	5.29E-08	5.30E-08
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	7.54E-04	7.16E-04	7.18E-04	7.30E-04
Ethane F	Results				
\mathbf{C}_{sd}	Concentration (ppmdv)	<0.0918	<0.0918	<0.0918	<0.0918
C_{sd}	Concentration (lb/dscf)	<7.16E-09	<7.16E-09	<7.16E-09	<7.16E-09
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<9.98E-05	<9.86E-05	<9.73E-05	<9.86E-05
VOC Res	sults				
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	<7.27E-04	<7.18E-04	<7.09E-04	<7.18E-04

Average includes 3 runs.

080410 154528

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5 runs.

For ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

For VOCs, '<' indicates a measured/calculated response below the detectiono limit (assumed to be 1% of the instrume calibration span).

For all calcuated averages, "<" values are treated as the entire value of the detection limit.

Client Reference No: 4100665755 CleanAir Project No: 13019

RESULTS

2-7

	······	Tak	ole 2-7:				
	Crude/Vac. Heat	er Stack -	- NO _X Emi	issions (U	SEPA 7E)	ł	
Run No.	, ,		1	2	3	4	5
Date (20	16}		Jun 15	Jun 15	Jun 15	Jun 15	Jun 15
Start Tim	e (approx.)		08:53	10:05	10:37	11:25	11:55
Stop Tim	ie (approx.)		09:14	10:26	10:58	11:46	12:16
Process	Conditions						
P ₁	Charge rate (BPD)		134,774	134,096	132,498	133,561	134,748
Fd	Oxygen-based F-factor (dscf/MMBtu)		8,123	8,123	8,123	8,123	8,123
Gas Cor	ditions						
O2	Oxygen (dry volume %)		8.6	8.7	8.8	8.6	8.5
CO_2	Carbon dioxide (dry volume %)		6.8	6.6	6.5	6.9	6.8
Nitrogen	n Oxides Results						
$C_{\rm sd}$	Concentration (ppmdv)		21.3	21.1	21.6	20.9	20.5
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)		36.2	36.1	37.3	35.3	34.7
C_{sd}	Concentration (lb/dscf)		2.54E-06	2.51E-06	2.57E-06	2.49E-06	2.45E-06
Efd	Emission Rate - F _d -based (lb/MMBtu)		0.0351	0.0351	0.0362	0.0343	0.0337
Run No.	Kanan ang Kana ang Kana ang Kana ang Kanan ang Kana	6	7	8	9	10	Average
Date (201	16)	Jun 15	Jun 15	Jun 15	Jun 15	Jun 15	
Start Tim	e (approx.)	12:26	12:57	13:27	13:57	14:29	
Stop Tim	e (approx.)	12:47	13:18	13:48	14:18	14:50	
Process	Conditions						
P1	Charge rate (BPD)	135,633	136,690	136,618	134,854	133,449	134,692
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,123	8,123	8,123	8,123	8,123	8,123
Gas Con	ditions						
O_2	Oxygen (dry volume %)	8.6	8.5	8.4	8.3	8.4	8.5
CO_2	Carbon dioxide (dry volume %)	6.7	6.8	7.1	7.0	7.0	6.8
Nitrogen	Oxides Results						
C_{ad}	Concentration (ppmdv)	20.6	20.6	19.9	19.8	20.0	20.6
C_{sd-x}	Concentration @ 0% O ₂ (ppmdv)	35.0	34.8	33.1	32.8	33.3	34.9
C_{sd}	Concentration (lb/dscf)	2.46E-06	2.46E-06	2.37E-06	2.36E-06	2.39E-06	2.46E-06
Efd	Emission Rate - F _d -based (lb/MMBtu)	0.0339	0.0338	0.0321	0.0318	0.0323	0.0338

Average includes 10 Runs

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13019

RESULTS

2-8

ull	Start	Date						Difference
lo.	Time	(2016)	RM Data	(%dv)	CEMS Data (%dv)	Difference (%	dv)	Percent
	08:53	Jun 15		8.60	8.61	-0.	01	-0.1%
	10:05	Jun 15		8.72	8.74	-0.	02	-0.2%
	10:37	Jun 15		8.82	8.83	-0.	01	-0.1%
	11:25	Jun 15		8.56	8.56	0.	00	0.0%
	11:55	Jun 15		8.54	8.54	0.	00	0.0%
	12:26	Jun 15		8.60	8.62	-0.	02	-0.2%
	12:57	Jun 15		8.54	8.04	0.	00	0.0%
	13.27	Jun 15		0.00 8.30	8.31	-0. -0	02 01	-0.270
*	14.20	Jun 15		8.36	8.31	~0. 0	05	0.1%
ļ	Average	<u>our ro</u>	<u></u>	8.56	8.57	-0.	01	-0.1%
			Re	alative /	Accuracy Test Audi	Results		
	Stan	dard Devia	tion of Diffe	rences	0.009			
		Confiden	ce Coefficie	nt (CC)	0.007			
		t-Va	lue for 9 Da	ta Sets	2.306			
						Limit		
	Re	lative Accu	ıracy (as %	of RM)	0.2%	Limit 20.0%		
= R vis =	Re eference = Continu	lative Accu Av Method (C ous Emiss	iracy (as % /g. Abs. Diff CleanAir Dat ions Monito	of RM) (%dv) a) ring Sys	0.2% 0.010 stem (Marathon Petro	Limit 20.0% 1.0 Dieum Company	Data)	071516 14264
=R VIS= FAc	Re eference = Continu alculatior	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ad on 9 of 10	of RM) . (%dv) a) ring Sys 0 runs.	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R vis = FA c 10	Re eference = Continu alculatior .00	lative Accu Av Method (C ous Emiss as are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ad on 9 of 14	of RM) . (%dv) a) ring Sys 0 runs. 1	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R VIS = FA c 10 9	Re eference = Continu alculation	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 10	of RM) . (%dv) a) ring Sys 0 runs.	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = ΓΑ c 10 9 8	Re eference = Continu alculation .00	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 11	of RM) . (%dv) a) ring Sys 0 runs.	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Dieum Company led run.	Data)	071516 14264
= R MS = ΓΑ c 10 9 8 7	Re eference = Continu alculation .00 .00	lative Accu Av Method (C ous Emiss as are base	aracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 10	of RM) . (%dv) a) ring Sys 0 runs. ⁻	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 oleum Company led run.	Data)	071516 14264
= R MS = TA c 10 9 8 7 6	Re eference = Continu alculation .00 .00 .00	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ad on 9 of 14	of RM) . (%dv) a) ring Sys 0 runs. 1	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = ΓΑ c 10 9 8 7 6 5	Re eference = Continu alculation .00 .00 .00 .00 .00	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ad on 9 of 11	of RM) . (%dv) a) ring Sys 0 runs. 7	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = ΓΑ c 10 9 8 7 6 5 4	Re eference = Continu alculation .00 .00 .00 .00 .00	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 10	of RM) . (%dv) a) ring Sys 0 runs. '	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = ΓΑ c 10 9 8 7 6 5 4 3	Re eference = Continu alculation .00 .00 .00 .00 .00 .00 .00	lative Accu Av Method (C ous Emiss ns are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 11	of RM) . (%dv) a) ring Sys 0 runs.	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = ΓA cc 10 9 8 7 6 5 4 3 2	Re eference = Continu alculation .00 .00 .00 .00 .00 .00 .00 .00	lative Accu Av Method (C ous Emiss is are base	aracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 10	of RM) . (%dv) a) ring Sys 0 runs. 1	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	
= R MS = 10 9 8 7 6 5 4 3 2 1	Re eference = Continu alculation .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	lative Accu Av Method (C ous Emiss is are base	uracy (as % /g. Abs. Diff CleanAir Dat ions Monito ad on 9 of 14	of RM) . (%dv) a) ring Sys 0 runs. '	0.2% 0.010 stem (Marathon Petro * indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264
= R MS = 10 9 8 7 6 5 4 3 2 1 0	Re eference = Continu alculation .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	lative Accu Av Method (C ous Emiss ns are base	aracy (as % /g. Abs. Diff CleanAir Dat ions Monito ed on 9 of 14	of RM) . (%dv) a) ring Sys 0 runs.	0.2% 0.010 stem (Marathon Petro f indicates the exclud	Limit 20.0% 1.0 Deum Company led run.	Data)	071516 14264

1

Client Reference No: 4100665755 CleanAir Project No: 13019

CleanAir

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13019

No.	Start Time	Date (2016)	RM Data (ppm@0%O2)	CEMS Data (ppm@0%O2)	Difference (ppm@0%O2)	Difference Percen
1	08:53	Jun 15	36.21	38.30	-2.09	-5.8%
2	10:05	Jun 15	36.15	38.37	-2.22	-6.1%
3	10:37	Jun 15	37.30	39.05	-1.75	-4.7%
4 *	11:25	Jun 15	35.32	37.65	-2.33	-6.6%
5	11:55	Jun 15	34.71	36.42	-1.71	-4.9%
6	12:26	Jun 15	34.99	36.77	-1.78	-5.1%
7	12:57	Jun 15	34.85	36.72	-1.87	-5.4%
8	13:27	Jun 15	33.13	35.15	-2.02	-6.1%
9	13:57	Jun 15	32.80	34.59	-1.79	-5.5%
10	14:29	Jun 15	33.34	34.57	-1.23	-3.7%
1	Average		34.83	36.66	-1.83	-5.3%
			Relative Ac	curacy Test Audit	Results	
	Star	dard Deviat	ion of Differences	0.283		
		Confidenc	e Coefficient (CC)	0.218		
		t-Val	le for 9 Data Sets	2.306		
					Limit	
	Re	ative Accu	acy (as % of RM)	5.9%	Limit 20.0%	
M = R EMS	Relative App teference = Continu	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emission	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste	5.9% 5.1% m (Marathon Petrol	Limit 20.0% 10.0% eum Company Data;	071516 1426
₹M = R CEMS ₹ATA α	Relative App teference = Continu calculation	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% rm (Marathon Petrol ndicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426
RM = R CEMS = RATA c 45	Relative App Reference = Continu calculation	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% orm (Marathon Petrole indicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426)
M = R EMS ATA c 45 40	Relative App Reference = Continu calculation	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% rm (Marathon Petrol ndicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426)
M = R EMS ATA c 45 40	Relative App leference = Continu calculation	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emission ins are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * ii	5.9% 5.1% orm (Marathon Petrole indicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426)
M = R EMS = RATA c 45 40 35	Relative App leference = Continu calculation 5.00	elative Accur Accuracy (a I. Std. = 40 Method (Cl Hous Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * ii	5.9% 5.1% om (Marathon Petrole ndicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426
:M = R :EMS :ATA c 45 40 35 30	Relative App Reference Continucalculation	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% em (Marathon Petrol ndicates the exclude	Limit 20.0% 10.0% eum Company Data) ed run.	071516 1426
M = R EMS 45 40 35 30 25	Relative App Reference = Continu calculation 5.00 5.00 5.00	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissi ns are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% em (Marathon Petrolendicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	071516 1426
M = R EMS = 45 40 35 30 25 20	Relative App leference = Continu calculation 5.00 5.00 5.00	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissi ns are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * ii	5.9% 5.1% om (Marathon Petrole ndicates the exclude	Limit 20.0% 10.0% eum Company Data) ed run.	071516 1426
M = R EMS 45 40 35 30 25 20 15	Relative App Reference = Continu calculation 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% em (Marathon Petrole ndicates the exclude	Limit 20.0% 10.0% eum Company Data) ed run.	071516 1426
M = R EMS 45 40 35 30 25 20 15 10	Relative App Reference = Continu calculation 5.00	elative Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissi ns are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * in	5.9% 5.1% em (Marathon Petrolendicates the exclude	Limit 20.0% 10.0% eum Company Data) ed run.	071516 1426
M = R EMS = 45 40 35 30 25 20 15 10 5	Relative App ceference = Continucalculation calculation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Active Accur Accuracy (a I. Std. = 40 Method (Cl ious Emissi ins are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * ii	5.9% 5.1% em (Marathon Petrolendicates the exclude	Limit 20.0% 10.0% eum Company Data; ed run.	
RM = R EMS = ATA c 45 40 35 30 25 20 15 10 5 0	Relative App Reference = Continucalculation calculation 5.00	Accuracy (a Accuracy (a I. Std. = 40 Method (Cl ous Emissions are base	racy (as % of RM) s % of Appl. Std.) opm@0%O2 eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * ii	5.9% 5.1% om (Marathon Petrole ndicates the exclude	Limit 20.0% 10.0% eum Company Data) ed run.	071516 1426

End of Section 2 - Results