RECEIVED AUG 13 2018

AIR QUALITY DIVISION

NO_x COMPLIANCE TEST REPORT FOR CITY OF STURGIS SV-ENG-6 February 13, 2018

City of Sturgis 130 N. Nottawa Sturgis, MI 29180

Job # 18-027

Test Report Date: 03-08-18

INTRODUCTION

This report presents the results of the emissions tests performed for the City of Sturgis, in Sturgis, MI on SV-ENG-6.

The purpose of the tests was to determine the NO_x emissions of the unit for compliance. The results can be found in the Summary of Test Results section of this report.

The testing was performed by Grace Consulting, Inc., located at 510 Dickson Street, Wellington, OH 44090. Present during the testing were Tim Moody, Levi Creek, and Jamek Russell from Grace Consulting, Inc. Dennis Dunlap and Dave Patterson with MDEQ were present to observe the testing.

The tests were performed on February 13, 2018. The testing was completed in accordance with USEPA test methods as published in the Federal Register.

The sampling and analytical procedures can be found in the Methods and Discussion section of this report. The raw field data and the equations used to determine the final results are presented in the Appendix section.

SUMMARY OF TEST RESULTS

The following presents the results of the emissions tests performed for the City of Sturgis, in Sturgis, MI on SV-ENG-6.

NO_x EMISSIONS

<u>Run</u>	Date	NO _x	NOx lb/hr	grams/hp-hr	DSCFM
L	2-13-18	994.40	182,97	10,005	25685
2	2-13-18	1008.20	178,92	9.784	24772
3	2-13-18	1016.70	192.71	9,991	25085
AVG.		1006.43	181.54	9,927	25181

STRATIFICATION

Date		Point 1	Point 2	Point 3	Average	Greatest Deviation	
2-13-18	NOx	993.9	1000.6	986.2	993.5	0.738	
2-13-18	O2	11.8	11.8	11.8	11.8	0.00%	
2-13-18	CO2	7.3	7.5	7.6	7.5	2.67%	

The complete results can be found in the computer printouts following.

Grace Consulting, Inc.

Sampling System Bias Check and Measured Value Correction

City of Sturgis Sturgis, MI - Unit SV-ENG-6

Date: 2/13/2018 Pollutant: NOx Monitor Span: 1033

Run Number	Average Measured Value	Initial Zero Gas Bias	Final Zero Gas Bias	Zero Gas Drift	Initial Upscale Gas Bias	Final Upscale Gas Bias	Upscale Gas Drift	Calibration Gas	Corrected Value, Dry Basis
1	993.5	-1.07	1.21	0.22	5 00.34	502.43	0.20	501.80	994.40
2	1009.3	1.21	1.32	0.01	502.43	503.54	0.11	501.80	1008.20
3	1015.5	1.32	1.45	0.01	503.54	500.25	-0.32	501.80	1016.70

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

where:

Cgas = Effluent gas concentration, dry basis, ppm

Cavg = Average gas concentraiton indicated by gas analyzer, dry basis, ppm

Co = Average of initial and final system calibration bias check responses

Cm = Average of initial and final system calibration bias check responses

for the zero gas, ppm

· •

for the upscale calibration gas, ppm

Cma = Actual concentration of the upscale calibration gas, ppm

SAMPLING SYSTEM BIAS CORRECTION

EMISSION CALCULATION (CFR 40, Part 60, Appendix A)

Eq. 6C-1

$$C_{gas} = \overline{(C - C_0)} \frac{C_{ma}}{C_m - C_0}$$

Where:

- C_{gas} = Effluent gas concentration, dry basis, ppm.
- \overline{c} = Average gas concentration indicated by gas analyzer, dry basis, ppm.
- C_o = Average of initial and final system calibration bias check responses for the zero gas, ppm.
- C_m = Average of initial and final system calibration bias check responses for the upscale calibration gas, ppm.
- C_{ma} = Actual concentration of the upscale calibration gas, ppm.

VELOCITY NOMENCLATURE

٨	-	orean application of stock (#2)
n anf	_	citoss-sectional area or stack, (IC)
aofm	-	actual cubic foot par minute
D	-	actual cubic last per minute
C.	-	nitet tube coefficient, dimensionles
Up deof	-	der standard guble feet
decm	_	dry standard cubic rect
fne		foot per second
ipa am-mole	_	atém-molo
30-000	-	office proceure drop in inches water pyerses
br	-	bour
1 1	-	noul persent of lookingtic appellant
lo Lla	-	percent of isokinetic sampling
III. FIG		mones mercury
lUS Is mala	-	pounds
		pound-mole
	=	percent molsture by volume
mmetu	-	million Biu
IVIs.		molecular weight of stack gas, wet basis, (ib/ib-mole)
D D	=	total number of traverse points
Гb D.	-	barometric pressure at the sampling site, (in Hg)
	-	static pressure in flue in incres water, average
Ps D		absolute stack gas pressure, (In. Hg)
Pstd D	3	standard apsolute pressure, (29.92 in. Hg) (14.7 psia)
Pi	=	total pressure in inches of water
Pv	=	average velocity pressure in incres of water
Qsd	=	dry volumetric stack gas flow rate corrected to standard conditions, (dscf/hr)
R	=	universal gas constant. (1545 ft lb/mole. ^o R)
VAP	=	square root of velocity head in inches water, average
scf	=	standard cubic feet
scm		standard cubic meters
Te	=	absolute average DGM temperature (°R)
т.	_	absolute average stack des temperature (°R)
	-	absolute average static gas temperature, (T)
isto:	_	Standard absolute temperature, (520 °R)
V1 V2	-	total volume of condensate allocated in implanets and ellice column
	-	total volume of iquid collected in implingers and slike get, mi
Vm V	-	volume of gas sample as measured by the dry gas meter, (dci)
V m(std)	=	volume of gas sample measured by the dry gas meter, corrected to
N/	_	standard conditions, (dsci)
Vo	-	volume of noe gas at actual conditions in cubic feet per minute
Vw(sld)	-	conditions. (scf)
Vwc	=	volume of water condensed in impiriders corrected to standard
		conditions
Vwag	Ξ	volume of water collected in silica gel corrected to standard conditions
Vs	3	average stack gas velocity, (ft/sec)
Wsg	2	weight gain of impinger silica gel in grams
Y	1	dry gas meter calibration factor
•	=	total sampling time, min
Vp	=	mass of flue gas (lb/hr)

•