

Michigan Department of Environment, Great Lakes, and Energy Remediation & Redevelopment Division

Location 61000066 Request for Review - Response Activity Plan - 7/28/2025

NEW: EQP4028 - Request for EGLE Review - Response Activity Plan - 61000066-RAP-

This form is required for submittal of a request for EGLE to review a Response Activity Plan, under Section 20114b, Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act. 1994 PA 451, as amended.

Site Information

Site Name: S.D. Warren #1 (Sappi)

Facility Id: 61000066

Street Address: 2400 Lakeshore Drive

City: Muskegon State: Michigan

Zip Code: 49441

Latitude: 43.21632414 **Longitude:** -86.30424545

Status of Submitter Relative to the Property (check all that apply): Prospective Owner, Prospective Operator

Property Tax Ids

1. Property Tax Id: 61-24-205-598-0001-00

Organization/Contacts

Organization Name: Parkland Acquisition Six, LLC Address: 75 West Walton Avenue, Suite A, Muskegon, MI, 49440

Contact Type: Business Owner Full Name: Charron, Rory

Address: 75 West Walton Avenue, Suite A, Muskegon, MI, 49440 Phone: (616) 522-8220 Email: rory@parklandgr.com

Submittal Information

1. Type of Response Activity Plan being submitted

Type of Response Activity Completed:

Other, Specify

media): No

The Response Activity Plan addresses the entire facility (entire facility as defined by Part 201, all releases, hazardous substances, and environmental

Please specify the release(s), hazardous substance(s), environmental media, and/or portions of the facility addressed by the Response Activity Plan: The Response Activity Plan addresses potential exposures associated with the soil and groundwater volatilization to indoor air pathways as a result of historical releases of volatile organic constituents on the Property. The ResAP also addresses potential fire and explosivity hazards associated with the presence of methane and soil and groundwater on the property. The VIAP and fire/ex concerns will be addressed for structures in the Phase 1 area using engineering controls as described.

2. Contaminant Source

No

Facility regulated under Part 201, other source, or source unknown: Yes Leaking Underground Storage Tank regulated pursuant to Part 213: No

Part 201 Site ID, if known: 61000066

Oil or gas production and development regulated pursuant to Part 615 or 625:

Licensed landfill regulated pursuant to Part 115:

Part 115: Licensed hazardous waste treatment, storage,

nateu puisuant to Fart 013 of 023.

or disposal facility regulated pursuant to Part

County: Muskegon

Other: Plan for Due Care measures for proposed development structures

No

Consent Agreement or other legal agreement with EGLE: Yes

3. Are/were the following present at the facility (Check all that apply)

Mobile or Migrating Non-Aqueous Phase Liquids (NAPL):

Soil contamination above any residential criteria:

Both Current & Previous Soil aesthetic impacts:

Soil contamination above any non-residential criteria:

Both Current & Previous

Both Current & Previous

Groundwater contamination above any residential criteria:

Groundwater contamination above any non-residential criteria:

Both Current & Previous

Both Current & Previous

Groundwater contamination above the Acute Inhalation Screening Level: Groundwater aesthetic impacts:

Not Applicable

Both Current & Previous

Soil Gas contamination above residential vapor intrusion (VI) screening

Both Current & Previous

Soil Gas contamination above non-residential VI screening levels: **Both Current & Previous**

Fire & Explosion hazards related to releases:

Conditions immediately dangerous to life or health (IDLH):

levels:

Both Current & Previous

Contamination existing in drinking water supply:

Imminent threat to drinking water supply:

Not Applicable

Not Applicable

Impact to Surface Water:

Impact to surface water sediments above screening levels:

Unknown

Unknown

4. The following questions assist EGLE in evaluating this request

Known or Suspected Contaminant(s) Type:

Other: Per-and polyfluoroalkyl substances

Petroleum, Volatile Organic Compounds, Metals, Other

Current Site Status: Undergoing property transfer, Inactive operation

Current Property Use: Nonresidential Anticipated Property Use: Residential

Estimated Area of Contamination Addressed in Response Action Plan (Cumulative): > 0.5 acre

Migration:

Has contamination migrated beyond the property boundaries?:

Has the Notice of Migration been submitted?: No

Unknown

Facility Investigation Status: Ongoing

Facility Response Activity Status: IR Implemented, Response Activity Ongoing Drinking Water Supply for Facility: No Current Water Supply, Municipal Available

On-site Well(s): No well on-site Approximate Depth of Well: 0 **Local Drinking Water Supply:**

Is facility in a designated Wellhead Protection Area: No Distance (in feet) to nearest off-site drinking water well

Private: 3000 Municipal: 67000

Surface Water Bodies on or Adjacent to Facility (Select all that apply): Wetlands, Ditch, Lake/Pond

Local Surface Water Bodies:

Distance (in feet) from release to nearest Ditch: 0 Distance (in feet) from release to nearest Wetland: 0 Distance (in feet) from release to nearest Lake/Pond: 0 Distance (in feet) from release to nearest Stream/River: 3500

Have other plans or reports, BEAs, DDCCs, NFAs, etc. been submitted for this facility?: Yes

Certifications

Primary Certifier

Role: Environmental Professional

First Name: Allen

Organization/Company: Barr Engineering Company

Work Phone: (616) 512-7013

Address:

3033 Orchard Vista Drive SE, Suite 200, Grand Rapids, MI, 49546

Secondary Certifier

Role: Submitter First Name: Allen

Organization/Company: Barr Engineering Company

Work Phone: (616) 512-7013

Address:

3033 Orchard Vista Drive SE, Suite 200, Grand Rapids, MI, 49546

Certification Status: In Progress

Last Name: Prince

Email: APrince@barr.com

Date:

7/28/2025 7:24:25 PM

Certification Status: Administrative Review

Last Name: Prince

Email: APrince@barr.com

Date:

7/28/2025 7:27:46 PM

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Remediation and Redevelopment Division

Remediation Information Data Exchange (Ride) Secondary Certification Authorization

Instructions:

FOR RIDE SYSTEM USERS, COMPLETION OF THIS FORM IS MANDATORY TO DELEGATE THE "SECONDARY CERTIFICATION" STEP OF A SUBMITTAL TO A USER OTHER THAN THE REGULATED ENTITY. This form was developed to accommodate regulated entities that choose not to create a RIDE user account. It allows for the secondary certification step to be completed by the primary submitter, usually a consultant or attorney acting on behalf of the regulated entity. The form is submittal-specific and should be completed for each submittal that the regulated entity is delegating authority; it cannot be used for multiple submittals. The form must be signed and dated by an authorized representative of the regulated entity to allow certification of the submittal on their behalf. This form should be placed as the first sheet of the attachment being provided through the RIDE system. Only with completion of this form can the primary certifier of a report act as the secondary certifier, unless both the primary and secondary certifiers are an authorized representative of the regulated entity. For questions related to the use of this form, please email EGLE-RIDE-Admin@Michigan.gov.

NOTE: This form does **NOT** fulfill the requirements of a notarized affidavit when one is statutorily required. A copy of the affidavit documentation, with notary signature and stamp, must be provided in addition to this form when submitting a Part 201 No Further Action Report (use <u>EQP4029/EQP4031</u>) or a Part 213 Closure Report (use <u>EQP4056/EQP4057</u>) through the RIDE system.

Authorization of an Organization Submitting a Report Through the RIDE System to Act as the Secondary Certifier on behalf of the Regulated Entity

Pursuant to Part 201, Environmental Remediation, and Part 213, Leaking Underground Storage Tanks, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, many submittals that are provided to the Department of Environment, Great Lakes, and Energy (EGLE), Remediation and Redevelopment Division (RRD) require the signature of an authorized representative of the regulated entity affirming the completeness and accuracy of the submittal. RRD has developed the RIDE system as an electronic portal for submittals. By use of this form, you are authorizing an agent to act on your behalf and provide a specific submittal to RRD through RIDE. Use of RIDE to provide submittals is strongly encouraged but remains voluntary. Alternatively, submittals can be provided to the EGLE Remediation and Redevelopment Division using the following address:

Michigan Department of Environment, Great Lakes, and Energy Remediation & Redevelopment Division PO Box 30426 Lansing, MI 48909-7926 By completing the following information and signing this form, I affirm that I am an authorized representative of the regulated entity providing this submittal and that, to the best of my knowledge and belief, all information, data, documents, and reports provided in this submittal are true, accurate, and complete.

Report Title:		07/28/2025 ompletion Date:
Organization Certifying Submittal	on my behalf: Barr Engineering C	Company
Name And Signature Of Author Submittal:	rized Representative Of The Reg	gulated Entity Providing The
rory@parklandmi.com Email:	Phone Num	(616) 522-8220 nber:
	d Acquisition Six, LLC	
		07/05/0005
	Rory Charron	07/25/2025

People with disabilities may request this material in an alternate format by emailing <u>EGLE-Accessibility@Michigan.gov</u> or calling 800-662-9278.

EGLE does not discriminate on the basis of race, sex, religion, age, national origin, color, marital status, disability, political beliefs, height, weight, genetic information, or sexual orientation in the administration of any of its programs or activities, and prohibits intimidation and retaliation, as required by applicable laws and regulations.

This form and its contents are subject to the Freedom of Information Act and may be released to the public.

......

Response Activity Plan

Vapor Intrusion and Methane Mitigation 2400 Lakeshore Drive Muskegon, Michigan

Prepared for Parkland Acquisition Six, LLC.

Prepared by Barr Engineering Co.

July 2025

3033 Orchard Vista Drive SE, Suite 200 Grand Rapids, MI 49546 616.512.7000 barr.com

Response Activity Plan Vapor Intrusion and Methane Mitigation

July 2025

Contents

E	kecutive	Summary	1
1	Ir	ntroduction	1
	1.1	Report Organization	2
2	С	Conceptual Site Model	4
	2.1	Background	4
	2.2	Geology	5
	2.3	Hydrogeology	5
	2.4	Snow Accumulation	6
	2.5	Distribution of VOCs, SVOCs, and other Constituents in Soil and Groundwater	6
	2.6	Distribution of Methane in Soil Gas	7
	2.7	Distribution of Organic Material	9
	2.8	Proposed Redevelopment Plans (Phase 1)	10
	2.8.1	1 Proposed Residential Buildings (Receptors)	10
	2.8.2	2 Utilities	11
	2.8.3	Other Site Development Features (without Indoor Airspace)	12
3	R	Response Activity Design Summary	12
	3.1	Response Activity Intent	12
	3.1.1	1 Podium Design	12
4	Ir	mplementation Overview	13
	4.1	Permit Requirements	14
	4.2	Construction Sequencing	14
	4.3	Due Care Obligations During Construction	14
	4.4	Construction Quality Assurance Measures	14
	4.5	Post-Construction Operation and Maintenance	15
	4.5.1	1 O&M Activities	16
5	D	Praft Declaration of Restrictive Covenant	17
6	Ir	mplementation Schedule	18
7	R	References	19

Tables

Table 2 Long-T	larm Levels for Combustible Gas Detectorserm Monitoring Frequency for Combustible Gas Detectorsentation Schedule	. 17
	Large Tables	
Large Table 1 Large Table 2 Large Table 3 Large Table 4	Summary of Analytical Results for Soil Samples Screened Against SSVIAC Summary of Analytical Results for Groundwater Samples Screened Against SSVIAC Summary of Analytical Results for Soil Samples Summary of Analytical Results for Groundwater Samples	
	Figures	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10	Existing Conditions Windward Pointe Redevelopment Plan 1938 Property Aerial Photograph 1955 Property Aerial Photograph 1968 Property Aerial Photograph 1974 Property Aerial Photograph 1981 Property Aerial Photograph Historical Site Features Exceedances of Residential Soil and Shallow Groundwater VIAP Screening Levels Windward Pointe Redevelopment Preliminary Utility Schematic	2 4 5 6
	Appendices	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H	Environmental Resources Group October 2023 Soil Gas Methane Evaluation 2024 Supplemental Methane Investigation 2025 Supplemental Soil Gas Investigation Geologic Modeling Technical Memorandum and Property Boring Logs Groundwater Elevations from 2022 Supplemental Environmental Investigation Windward Pointe Conceptual Plan Views and Cross Sections Podium Style Construction Conceptual Design Plans Draft Declaration of Restrictive Covenant	

Abbreviations

Barr Engineering Co.
bgs below ground surface
cm/s centimeters per second

CQA construction quality assurance

CSM conceptual site model

EGLE Michigan Department of the Environment, Great Lakes, and Energy

HDPE high density polyethylene

MDEQ Michigan Department of Environmental Quality

Parkland Acquisition Six, LLC

PVC polyvinylchloride
ResAP response activity plan

SESC soil erosion and sedimentation control

Executive Summary

Parkland Acquisition Six, LLC ("Parkland") is under contract to purchase property located at 2400 Lakeshore Drive in Muskegon, Michigan (the "Property") from Pure Muskegon, LLC ("Pure Muskegon"). Parkland seeks to acquire the Property and redevelop the Phase 1 portion of the Property with approximately 190 to 220 single-family residences, spaces for recreational/public use, including multiple points of public access to Muskegon Lake, and supporting roadways and infrastructure. Parkland is in the process of seeking an amendment to its approved Planned Unit Development ("PUD") from the City of Muskegon that reduces the density of the Phase 1 redevelopment provides for the phased development approach, and otherwise provides for differences in construction methods outlined in this Response Activity Plan ("ResAP"). The proposed redevelopment will also fulfill Pure Muskegon's obligations under the 2015 Administrative Order by Consent ("AOC") for Response Activities between the Michigan Department of Environmental Quality [MDEQ; now the Michigan Department of Environment, Great Lakes, and Energy ("EGLE")], the Michigan Department of Attorney General, Melching, Inc., Melcor, LLC, S.D. Warren Company d/b/a Sappi North America, and Pure Muskegon (AOC-RRD-15-009). Parkland's purchase of the Property is contingent upon approval of this ResAP.

Soil and groundwater on the Property are environmentally impacted as a result of releases associated with historical paper manufacturing activities. Soil and groundwater on the Property contain volatile organic constituents ("VOCs"), semi-volatile organic constituents ("SVOCs"), metals, per- and polyfluoroalkyl substances ("PFAS"), and other contaminants regulated under Part 201 ("Environmental Remediation") of 1994 Michigan PA 451, as amended ("Part 201").

Methane is present in soils and groundwater on the Property derived from biological degradation of underground organic materials. Methane concentrations are generally highest near the groundwater table and dissipate significantly at depths closer to the ground surface. Generally recognized guidance for development on sites where methane is of concern suggests that high concentrations of methane in soil gas must be present with significant differential pressures between the soil and atmosphere to present a risk of fire/explosion in the indoor airspace of overlying structures¹. Significant subsurface pressure associated with methane has not been observed on the Property, and advective/pressure-driven flow of methane in the subsurface is not considered likely on the Property as a result. Explosivity or fire issues associated with subsurface methane are known or documented to have occurred throughout the 100-year period of industrial use of the Property, despite the known use of common ignition sources such as hot work, welding, smoking, and building fires.

This ResAP describes due care measures that Parkland proposes to implement pursuant to the requirements of Section 20107a of Part 201 to mitigate potential exposures to VOCs via the volatilization to indoor air inhalation pathway and the potential for fire and explosivity hazards associated with the presence of methane in soil and groundwater for the Phase 1 redevelopment of the Property. As described herein, Parkland proposes to construct the residential buildings in Phase 1 using a podium style construction concept to prevent VOCs, including methane, from potentially entering the buildings' indoor airspace. Through this use of podium-style construction, potential exposures to VOCs in the subsurface and fire/explosivity issues associated with methane in the subsurface in the Phase 1 portion

For future development, as is being considered in this ResAP, no further action (e.g investigation, mitigation, ect.) is recommended if the shallow soil gas concentration of methane is less than 30 % v/v and differential pressures is less than 2 inches water as outlined in American Society of Testing and Materials International. E2993 – 23: Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone. November 2023.

of the Property will be mitigated. Conceptual designs regarding proposed buildings to be constructed in the Phase 1 redevelopment are presented in this ResAP.

Generally accepted guidance for podium style construction calls for a sufficiently open space to be present below the structure such that soil gas from soils underlying the structure is sufficiently diluted or directed away prior to potentially entering the indoor airspace of the structure through cracks or imperfections in the building floors or walls. The efficacy of podium style construction as described is not dependent on the rate of methane generation (methanogenesis) in the subsurface on the Property, in the absence of observable subsurface pressure and the associated potential for advective methane flow, because the podium space will prevent soil gas from entering the buildings' indoor airspace.

Approximately eighty percent (80%) of the Phase 1 portion of the Property will remain devoid of slab-on-grade structures, pavement, or other impermeable surfaces after construction of the proposed development, which will allow methane dissipation to occur in a manner that is generally consistent with prior industrial use and current conditions (i.e., vacant land).

Finally, this ResAP presents a proposed framework by which operation and maintenance ("O&M") of the proposed engineering controls will be accomplished and funded. A draft Declaration of Restrictive Covenant ("RC") intended to be recorded on the Phase 1 Property is enclosed as a proposed institutional control to assure that the engineering controls are: (a) constructed in accordance with best engineering practices; and (b) consistently and perpetually operated and maintained.²

Parkland proposes to create a non-profit business entity that will be responsible for carrying out the O&M obligations associated with the proposed engineering controls. This dedicated business entity will be put in place prior to the sale of any portions of the Property by Parkland and will generate funds through collection of dues from the owners of the Property to fund the O&M activities, including, but not limited to, routine system maintenance, repair and replacement of equipment, and reporting obligations. This nonprofit business entity will have the authority to implement the requirements of the RC, and place and enforce liens against owners' interest in the Property, to ensure the adequate and timely collection of dues from the property owners to support its activities under this paragraph.

O&M activities will be completed by an appropriately qualified and experienced service provider retained by the non-profit business entity. Individual homeowners will not be relied upon to complete O&M activities associated with engineering controls. The RC will run with the Property and be applicable to subdivision of the Property, thereby creating an enforceable mechanism by which future Property owners are bound to fund and otherwise allow completion of the O&M activities described in this ResAP and in the RC.

.

The RC will be further refined based on detailed engineering design and consultation with EGLE until it is recorded.

Purpose

Barr Engineering Co. ("Barr") has prepared this Response Activity Plan ("ResAP") on behalf of Parkland Acquisition Six, LLC ("Parkland") related to environmental conditions on a portion of the Property located at 2400 Lakeshore Drive in the City of Muskegon, Muskegon County, Michigan, as more particularly depicted in the attached Figure 1 and Figure 2 (the "Phase 1 Property" or the "Phase 1 redevelopment"). Figure 1 depicts existing conditions at the Property. Figure 2 depicts Parkland's site plan for redevelopment of the Property and the Phase 1 redevelopment. The scope of this ResAP is limited to the Phase 1 Property only.

This ResAP seeks approval from the Michigan Department of Environment, Great Lakes, and Energy ("EGLE"), Remediation and Redevelopment Division ("RRD") for proposed response activities to mitigate two potential risks in the Phase 1 Property: 1) potential for exposures associated with the volatilization to indoor air and inhalation ("VI") exposure pathway; and 2) potential fire and explosivity hazards associated with the presence of methane in soil gas and groundwater. This ResAP describes generally accepted construction guidelines, construction methods, and engineering and institutional controls for the Phase 1 redevelopment that collectively will mitigate potential exposures to VOCs, including methane, SVOCs, hydrogen sulfide, and ammonia, via the VI pathway, and potential fire and explosivity hazards associated with the presence of methane in soil gas and groundwater. The construction methods include podium style construction and installation of combustible gas detectors for residential buildings in the Phase I redevelopment area.

This ResAP is being submitted on behalf of Parkland to obtain formal approval from EGLE that the response activities proposed herein for the Phase 1 Property are consistent with Parkland's and successor property owners' and/or operators' "due care" obligations pursuant to Section 20107a(1)(b) of Part 201 of 1994 Michigan PA 451, as amended ("Part 201"), for the contaminants and exposure pathways outlined above. In this ResAP, Parkland is not seeking EGLE approval under Section 20107a(1)(b) of Part 201 for contaminants or response activities other than as outlined above³.

Background

Parkland executed an agreement to purchase the approximately 123-acre Property from Pure Muskegon, LLC ("Pure Muskegon"). The Phase 1 Property area constitutes approximately 50 acres of the Property. The Property was historically used for industrial purposes, including paper manufacturing for approximately 100 years. Historic paper and other manufacturing operations on the Property have resulted in organic and inorganic impacts to groundwater and soil.

A former owner and occupant of the Property recorded a Declaration of Restrictive Covenant on the Property that prohibited environmental investigation activities on the Property and significantly limited available options for redevelopment of the Property. That party subsequently amended the Restrictive Covenant to remove certain restrictions in exchange for a release of liability provided by the State of Michigan [EGLE – at that time the Michigan Department of Environmental Quality – and the Michigan Department of Attorney General) as set forth in an Administrative Order by Consent ("AOC") in 2015]. Pure Muskegon, as a non-liable party, was a signatory to the AOC for limited purposes, including the State of Michigan's requirement to use "reasonable best efforts to pursue construction of a mixed-use development

The response activities proposed herein are not intended to constitute a final remedy under Part 201 for any regulated constituent or exposure pathway, although they may serve as a component of a final remedy for the Property in the future.

on the Property consisting of residential uses, commercial uses, and public uses." Pure Muskegon subsequently purchased the Property. Since its purchase, Pure Muskegon has used and continues to exert reasonable best efforts to pursue the mixed-use development described in the AOC. Pure Muskegon intends through its sale to Parkland to fulfil its obligations under the AOC, including the redevelopment of the Phase 1 Property as described in this ResAP.

Parkland seeks to acquire and redevelop the Property in a manner consistent with Pure Muskegon's obligations under the AOC and Parkland's amended Planned Unit Development ("PUD"), to be approved by the City of Muskegon, that includes residential, commercial and retail spaces, spaces for recreational/public use, multiple points of public access to Muskegon Lake, and supporting infrastructure throughout the Property The proposed redevelopment will be constructed in phases, with the Phase 1 redevelopment consisting of the construction of approximately 190 to 220 single-family residences and supporting infrastructure on the Phase 1 Property. Parkland is in the process of seeking an amendment to its approved Planned Unit Development ("PUD") from the City of Muskegon that reduces the density of the Phase 1 redevelopment, provides for the phased development approach, and otherwise provides for differences in construction methods outlined in this ResAP.

1.1 Report Organization

This ResAP is organized as follows:

Section 2: Conceptual Site Model (CSM): This section includes a summary of the current CSM, describing the site history, geologic setting, hydrogeologic conditions, the nature and location of known releases on the Property during historical use, and the resultant distribution of VOCs, including methane and other volatile constituents, in soil, soil gas and groundwater at the Property. This section also describes how the proposed location and construction methods for buildings and utilities in the Phase 1 redevelopment relate to the VI exposure pathway.

Section 2 also discusses the nature and extent of organic materials in the subsurface on the Property, because the organic materials are the putative source of methane in soil and groundwater at the Property.

The following documents are included as appendices to this ResAP to support the CSM:

- Appendix A A soil gas methane evaluation prepared for Parkland by Environmental Resources Group ("ERG") in October 2023. The report summarizes the distribution of methane in soil gas on select areas of the Property as evaluated at a depth of approximately 5 feet below ground surface (bgs).
- Appendix B A supplemental methane investigation technical memorandum prepared for Pure Muskegon and Parkland by Barr in May 2024. The technical memorandum summarizes the distribution of methane in soil gas, subsurface pressure data, and other soil gas quality data regarding environmental risks associated with methane in soil gas.
- Appendix C A second supplemental soil gas investigation technical memorandum prepared for Pure Muskegon and Parkland by Barr in June 2025. The technical memorandum summarizes the distribution of methane and VOCs in soil gas, subsurface pressure data and other soil gas quality data regarding environmental risks associated with methane in soil gas.

- Appendix D A technical memorandum prepared for Pure Muskegon by Barr in December 2022
 regarding geologic modeling of subsurface conditions on the Property. The memorandum
 summarizes subsurface geotechnical conditions related to the presence of organic material on
 the Property. Soil boring logs used to develop the geologic model are also presented in
 Appendix D.
- Appendix E Figure from a supplemental environmental investigation summary report prepared for Pure Muskegon by Barr in December 2022. The figure in this appendix summarizes current information regarding the groundwater elevations at the Property.
- Appendix F Conceptual plan views and cross-sections for buildings proposed to be constructed on the Property.
- Appendix G Conceptual design plans for typical residential home with a podium style
 construction concept, where the podium style construction is the response activity proposed
 herein.
- Appendix H Draft Declaration of Restrictive Covenant.

Section 3: Design Summary: This section summarizes the options assessment and discusses the content of Appendix G which presents conceptual design plans for the proposed response activity.

Section 4: Implementation Overview: This section provides a summary of the key steps for response activity implementation and post-construction operation and maintenance of the response activity.

Section 5: Implementation Schedule: This section provides a high-level overview of the schedule for implementing the response activity, which is generally based on the proposed development construction schedule.

2 Conceptual Site Model

This section summarizes relevant Property background information, geologic and hydrogeologic conditions, soil and groundwater quality, and constraints for response activity implementation.

2.1 Background

The Property has been used for manufacturing for over 120 years. Tanning, manufacture of tanning extract, and sawmill operations on portions of the Property preceded paper manufacturing by the S.D. Warren Company and its predecessors d/b/a Sappi North America ("Sappi"), which began in approximately 1900 and lasted until 2009. Sappi imported raw wood materials to the Property, which were chemically treated and bleached to create paper pulp, which was used in the paper-making process. Paper was dried, cut, and coated on the Property to create a finished product. Additional activities such as coal storage for boilers, lime storage, above-ground chemical storage, and wastewater treatment supported the manufacturing of paper on the Property.

The northern portion of the Property was created by placement of fill into Muskegon Lake during early periods of paper manufacturing. Based on soil boring logs from the Property and available information, fill materials included by-products from paper production, lime, wood debris, sand, concrete debris, and other industrial fill. Fill materials were placed onto naturally occurring lake-bottom sediments to create made land that extends beyond the naturally occurring shoreline of Muskegon Lake. Historical aerial photographs in Figure 3 - Figure 7 show the progressive filling of Muskegon Lake to create the northern portions of the Property (ERM, 2016a) during a period from prior to 1938 until approximately 1981.

In 2011, Melching Inc. ("Melching") purchased the Property from Sappi and demolished most structures associated with the former Sappi operations. In 2016, MDEQ (now EGLE) approved the import of lime-amended sand fill to an area on the eastern portion of the Property. This fill was used to backfill certain areas of the Property following demolition activities. In July 2016, Pure Muskegon purchased the Property from Melching. In 2023, Parkland executed a purchase agreement to acquire the Property from Pure Muskegon for the purpose of mixed-use redevelopment. Parkland's closing on the Property is contingent upon approval of this ResAP.

Figure 8 shows certain prominent features of the Property in 2005 when paper production was occurring. Figure 1 shows the present-day features at the Property.

2.2 Geology

The Property is located on the south shore of Muskegon Lake in a physiographic region known as the Michigan Lake Border Plain, which is characterized by land of relatively low relief and low altitude. The relatively low relief and altitude are the result of glacial erosion followed by post glacial deposition of lacustrine (lake) clay and sand in several large glacial lakes. As such, absent imported fill materials, the geology of the Property is composed of predominantly lacustrine sand and gravel (LEI, 2012). Previous studies along the southern portion of Muskegon Lake – and prior investigations at the Property – have indicated that much of the soil near the shoreline consists of industrial or construction fill materials, lumbering wastes, lime, and brick (ERM, 2016). Soil borings completed by Barr in April 2022 indicate approximately 8.5 to 20 ft of fill and debris underlain by organic materials and brown to gray, fine- to medium-grained poorly graded sands (see boring logs in Appendix D). The lithology fines downward from the poorly graded sands to silty sands interbedded with thin (approximately 1-inch) layers of silt and clay to the top of a lean silty clay at a depth of approximately 50 to 70 ft bgs (Barr, 2022b).

The organic layer, relevant to this ResAP and the VI mitigation activities proposed herein, consists of peat or organic silt, and is generally laterally continuous across the Property underlying the fill material. The organics range in thickness up to 30 feet, with the thickest deposits toward the northeast portion of the Property, and are generally thicker in northern portions of the Property (see Figure 3 in Appendix D). Samples collected during Barr's geotechnical investigation in 2022 indicated that the organic content is consistent with naturally occurring peats and organic soils. The measured water contents of the peat and organic silt in this organic layer were between 61 and 259 percent, and averaged 76 percent, respectively (Barr, 2022b).

2.3 Hydrogeology

Groundwater is present at the Property at varying depths that generally do not exceed 10 ft bgs. Groundwater elevations vary with the water elevation of Muskegon Lake and Lake Michigan, including seasonal variations and variations attributed to precipitation events. Groundwater elevations range from 585.5 to 580 ft above mean sea level (asml). Groundwater flows generally to the north and vents to Muskegon Lake, as shown on Figure 2 in Appendix E. Based on investigations by Barr and others, a single unconfined water bearing formation is identified at the Property underlain by an extensive clay aquitard (Section 2.2). Aquifer thickness across the Property ranges from 27 feet to 42 feet thick from east to west, respectively. Vertical gradients were calculated as upward (discharge), indicating that groundwater from elevated recharge areas to the south is migrating downward to the clay and then upwelling at the Property before discharging across the groundwater/surface water interface (GSI) seepage face along Muskegon Lake (LEI, 2012). Previous pneumatic falling head tests and grain size analyses conducted at the Property indicate a hydraulic conductivity of 46 ft/day and a porosity of 0.4, resulting in a calculated groundwater flow rate of 0.7 feet per day (LEI, 2012). The horizontal and vertical groundwater flow directions and gradients are consistent with those expected in this geologic setting.

2.4 Snow Accumulation

The City of Muskegon has an average of 80 days per year with snow cover4.

The National Oceanic and Atmospheric Administration (NOAA) has a weather monitoring station at the Muskegon County airport that is approximately 5 miles from the Property. Daily snow depth data from this station was gueried from the National Centers for Environmental Information (NCEI). A total of 47,114 records were returned. A subset of 6,972 records was generated by removing records without snow depth data and snow depth data recorded as 0 inches from the years 1925 to 2025. The resulting record subset represents days on which snow was recorded as being present on the ground at the Muskegon County airport weather monitoring station during the last 100 years. The mean, median, and maximum snow depths were approximately 7 inches, 5 inches and 34 inches⁵, respectively. The standard deviation is approximately 6 inches, with 19 inches and 25 inches representing two and three standard deviations from the mean, respectively. Over 99% of total days in the last 100 years had snow depths of less than 23". The maximum snowfall in the last 25 years at the Muskegon County airport weather monitoring station was approximately 27 inches. At the same monitoring station, the maximum snowfall in the last 10 years was approximately 20 inches, which clearly demonstrates a trend of decreasing maximum snowfall over time. This ongoing trend in reduced overall maximum snowfall accumulation was considered in the development of the proposed podium height presented in this document. Given the proximity of the Muskegon County airport weather monitoring station to the Property and the proximity of the Phase 1 redevelopment area to Muskegon Lake, accumulated snow on the Property is reliably expected to be at a depth of less than the planned 24-inch height of the residential podiums.

2.5 Distribution of VOCs, SVOCs, and other Constituents in Soil and Groundwater

Large Table 1, Large Table 2, Large Table 3, and Large Table 4 present soil and groundwater characterization data collected by Barr and other consultants during previous environmental investigations on the Property from 2002 to 2022⁶. In response to a request from Barr on behalf of the project stakeholders, residential and non-residential site-specific volatilization to indoor air criteria ("SSVIAC") were established for the Property by EGLE on December 9, 2024. The SSVIAC were established based on conceptual site models ("CSMs") developed by Barr that were based on Parkland's approved PUD from the city of Muskegon which proposed slab-on-grade style construction of buildings on the Property at that time. Based on the proposed use of podium-style construction in the Phase 1 Property, the vapor intrusion pathway is not complete and SSVIAC established pursuant to Part 201 are not relevant to the redevelopment activities proposed herein. Soil and shallow groundwater data are therefore presented in this section and screened against SSVIAC to improve the overall site CSM and for completeness, but are not relevant to the proposed response activity.

Soil and shallow groundwater data are summarized in Large Table 1 and Large Table 2, respectively. Soil and shallow groundwater data are summarized in Large Table 3 and Large Table 4.

²⁰²³ Muskegon County Community Profile. https://co.muskegon.mi.us/DocumentCenter/View/16145/2023-Muskegon-County-COMMUNITY-PROFILE. Accessed June 2025.

This snowfall event occurred in December 1963 and snow was present at the Muskegon County airport weather monitoring station at a depth of over 24" for six consecutive days.

The soil data set includes soil data from references 3 - 10 in Section 7 for which locations are documented. The groundwater data set represents the most recent groundwater data collected from the Property (2019 – 2022).

2.6 Distribution of Methane in Soil Gas

Parkland's current proposed redevelopment plan, shown in Figure 2, involves constructing single-family residences in the Phase 1 Property using podium style construction. As noted above, SSVIAC developed by EGLE in December 2024 are not applicable to residential buildings constructed using podium style construction methods because the presence of an appropriately constructed podium underlying a structure renders the VI pathway to the indoor airspace of that structure incomplete thereby preventing impacts to receptors in the indoor airspace. Volatilization to indoor air pathway screening levels ("VIAP SLs") developed by EGLE are not applicable to residential buildings constructed using podium style construction methods for the same reason. However, data presented in this section were screened against VIAP SLs to provide context to the VI pathway CSM for the Property.

The letter report contained in Appendix A presents results from a soil-gas investigation carried out on the Phase 1 Property and other select areas by ERG on behalf of Parkland in October 2023. Twenty-five (25) soil gas wells were constructed to a depth of 5-feet and sampled for methane. The sample results were screened against VIAP SLs for soil gas developed by EGLE. Figure 3 in Appendix A shows the soil gas well locations, and Table 2 in Appendix A summarizes the analytical results of soil gas sampling.

Methane concentrations in soil gas at a depth of approximately five feet bgs generally exceeded VIAP SLs in the investigation area, with the exception of the former wastewater treatment plant area (see Appendix A - Figure 3). Based on the results of the initial investigation, additional data needs were identified that were relevant to the implementation of presumptive engineering controls to address potential VI exposures and fire/explosivity issues associated with methane and other VOCs in soils and groundwater on the Property. These data needs included: 1) methane concentration data for soil gas on the Property at lesser depths; and 2) differential pressure data to assess the advective flow potential of methane and fire and explosivity risk posed by methane.⁷ In response to these data needs, a follow-up investigation was carried out by Barr on behalf of Parkland in February 2024. Figure 1 in Appendix B shows the soil gas well locations, and Table 1 in Appendix B summarizes the analytical soil gas data associated with Barr's February 2024 investigation. The soil gas data in Appendix B were screened against the residential VIAP SL for methane. Key findings from Barr's 2024 supplemental methane investigation are below:

- Methane concentrations in soil gas at 2 ft bgs were below the residential VIAP SLs except for two samples from VP-3-24 and VP-6-24, both located near the eastern shore of the Property.
- At every nested soil gas well sampled, methane concentrations in the soil gas at 2 ft bgs were less than methane concentrations in soil gas at 5 ft bgs indicating methane concentrations in soil gas are lower closer to the surface and increase with soil depth.
- The combined concentrations of methane and carbon dioxide in soil gas wells at 5 ft bgs are less than 90% and therefore do not suggest the presence of "undiluted" biogas as defined in the ASTM E2993 -238 risk assessment framework.
- Generally recognized guidance for methane supports that high concentrations of methane in soil
 gas (> 30% v/v) must be present with high differential pressures (> 2 inches water) between the
 soil and atmosphere to present a risk of fire/explosion in the indoor airspace of overlying

-

American Society of Testing and Materials International. E2993 – 23: Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone. November 2023.

⁸ Ibid.

structures. All differential pressures collected were substantially below the ASTM E2993-23 risk threshold value of 2 inches water. Negative differential pressure values are attributed to the variable barometric pressure between measuring events, variable changes in temperature through the investigation, and spring snow melt conditions. Differential pressures in soils at the Property are therefore not expected to substantially drive methane in soil gas into the indoor airspace of overlying structures.

A second supplemental soil gas investigation was carried out by Barr in March 2025 to further refine the VI CSM for the Phase 1 redevelopment. Specifically, existing soil gas wells were sampled and analyzed for VOCs in addition to methane, differential pressure and other constituents that were initially analyzed in Barr's February 2024 Investigation. Figure 1 in Appendix C shows the soil gas well locations, Figure 2 and Table 1 in Appendix C summarize the analytical soil gas data associated with Barr's March 2025 investigation.

Soil gas data in Appendix C were screened against residential and non-residential SSVIAC in the interest of providing a more complete VI CSM for the Property. The residential and non-residential SSVIAC criteria discussed in Section 2.5 for methane against which the data in Appendix C were screened have the same numerical value (8,400,000 ug/m³ or approximately 1.3% v/v) as the residential VIAP SL for methane. The proposed use of podium-style construction in the Phase 1 Property renders the vapor intrusion pathway incomplete and therefore neither SSVIAC established pursuant to Part 201 nor VIAP SLs are relevant to the redevelopment activities proposed herein. Notwithstanding, key findings from the 2025 supplemental soil gas investigation are presented below:

- Non-methane VOC concentrations in soil gas from all locations sampled were below all SSVIAC for the Property.
- Methane concentrations in soil gas at 2 ft bgs were below all SSVIAC in the Phase 1 Property except in five locations:
 - o VP-3-24S, VP-4-24S, VP-6-24S within the eastern side of the Phase 1 Property
 - VP-9-24S within the northern portion of the Phase 1 Property
 - o VP-22-24S within the western portion of the Phase 2 Property
- Methane concentrations in soil gas at 5 ft bgs were below all SSVIAC except for one location:
 - VP-9-23D within the northern portion of the Phase 1 Property
- Of the nine locations where both of the nested wells were sampled, methane concentrations were generally similar at the 2-foot and 5-foot depth intervals.
 Of the 19 wells sampled in both 2024 and 2025, observed methane concentrations were only greater in 2025 at VP-24S and VP-4S. The variability observed in subsurface methane concentrations is expected and assessment of that variability was a primary goal of the additional sampling reported here. The observed variations do not change the conceptual site model for this area of the Property nor do they lead to additional requirements related to proposed redevelopment of the Property.
- All differential pressures collected were substantially below the ASTM E2993-23 risk threshold
 value of 2 inches water which indicates that differential pressures in soils at the Property are not
 expected to substantially drive methane in soil gas into the indoor airspace of overlying
 structures. Negative differential pressure values are attributed to changes in temperature through
 the investigation, and spring snow melt conditions at the time of sample collection.

These findings are generally consistent with the results of prior investigations of methane in the vadose zone in the Phase 1 Property. Based on discussions with EGLE, and in Barr's professional opinion, the

proposed podium style construction breaks/interrupts the VI pathway and mitigates the potential for methane fire/explosivity issues.

2.7 Distribution of Organic Material

As discussed in Sections 2.1 and 2.2, industrial and organic fill materials were brought to the Property and overlie naturally occurring lake bottom sediments thereby creating the a large portion of the Property. As part of Barr's evaluative work in relation to the Property on behalf of Pure Muskegon, Barr completed a preliminary evaluation of geotechnical conditions on the Property (Barr, 2022b). Of particular interest at the time of investigation was the presence of subsurface organic materials, primarily because of their poor geotechnical properties and the ramifications of their presence on foundation design for proposed development features. The technical memorandum in Appendix D used Earth Volumetric Studio™ ("EVS") to model the areal extent, depth, and thickness of organic materials in the subsurface on the Property, based on soil boring logs and other information garnered from prior environmental and geotechnical investigations of the Property.

While the EVS modeling was completed primarily to facilitate assessment of geotechnical conditions on the Property, the EVS model also has the capability to be used to estimate the volume of organic material present in the subsurface on the property. Figure 3 in Appendix D presents the spatial distribution and thickness of organic materials in soils on the Property and indicates that organic materials are generally distributed throughout the Property, with the thickest layers in the northeast and little to no organic materials in the southwest. Conservative estimates of densities of typical organic soils of materials of approximately 100 lbs per cubic foot⁹ were applied to the volumetric estimates of organic materials predicted by the EVS model to obtain an estimate of the total mass of organic material on the Property¹⁰.

Methane in soil gas on the Property, as discussed in Section 2.6, appears to be derived from anerobic breakdown of organic materials through methanogenesis¹¹. The distribution of organic materials in site soils, as derived from soil boring data and presented in the EVS model, suggests that methane is being generated at various depths in site soils over a significant portion of the Property, including in the saturated zone. As discussed in Sections 2.1 and 2.2, methane appears to be derived from multiple sources on the Property including fill materials which were placed to create land and naturally occurring lake bottom materials upon which fill materials were placed.

When the Phase 1 redevelopment buildout in Figure 2 is complete approximately eighty percent (80%) of the Phase 1 Property area will be devoid of slab-on-grade structures, pavement, or other impermeable surfaces which will allow methane dissipation to occur in manner that is generally consistent with prior industrial use and current conditions (i.e., vacant land).

In addition, ongoing subsurface methane attenuation processes will generally continue in the areas of the Property where impermeable surfaces are not constructed. As noted in ASTM E2993-23, soil gas concentrations of methane typically decrease as depth below ground surface decreases in aerobic soils

100 lbs/ft^3 as a density for organic soils represents the high end of estimates found in *Geotechnical Engineering* (Holtz and Kovacs 1981) and *Muskeg Engineering Handbook* (MacFarlane 1969).

Based on boring logs in Appendix D, certain layers in the EVS model were represented as wood or wood chip material. For these layers, a density of 50 lbs/ft^3 was used. 50 lbs/ft^3 represents the upper range found in *Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America* (Miles and Smith, 2009)

Sepich, J. Hazard Assessment by Methane CVP (Concentration/Volume/Pressure):(Everything You Knew about Methane Action Levels is Wrong). 2008. Paper A-008, in: Bruce M. Sass (Conference Chair), Remediation of Chlorinated and Recalcitrant Compounds—2008. Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2008). ISBN 1-57477-163-9, published by Battelle, Columbus, OH, www.battelle.org/chlorcon.

(e.g., sandy soils such as those covering most of the Property). The attenuation of methane in soil gas under these conditions is primarily attributed to aerobic methane biodegradation.

2.8 Proposed Redevelopment Plans (Phase 1)

Parkland seeks to redevelop the Property in a manner consistent with approximately 190 to 220 single-family residences, spaces for recreational/public use, including multiple points of public access to Muskegon Lake, and supporting roadways and infrastructure.

Parkland is in the process of seeking an amendment to its approved Planned Unit Development ("PUD") from the City of Muskegon that reduces the density of the Phase 1 redevelopment, provides for the phased development approach, and otherwise provides for differences in construction methods outlined in this ResAP.

Figure 2 depicts Parkland's site plan for redevelopment of the Property and the Phase 1 redevelopment¹².

2.8.1 Proposed Residential Buildings (Receptors)

As depicted on Figure 2, Parkland is proposing to construct the following type and approximate quantity of proposed dwellings on the Property in the Phase 1 redevelopment¹³:

- 0 to 40 single-family dwellings with podium-style construction on staggered lots (designated "2" on Figure 2)¹⁴
- 157 to 220 single-family dwellings with podium-style construction on aligned lots (designated "3" on Figure 2)

Figure 2 describes the allowable uses, maximum building heights, separations, and setbacks for each building type under the approved PUD from the City of Muskegon. Although Figure 2 states that the single-family homes to be constructed on the Property may have basements under the City of Muskegon's zoning, no subterranean basements are planned by Parkland and podium style construction will be required through the Restrictive Covenant (Section 5) for all single-family homes constructed on the Phase 1 Property.

Appendix F provides conceptual plan views and cross-sections for the residential buildings. All conceptual drawings presented in Appendix F are intended to represent how buildings are planned to be constructed on the Property based on currently available information, with the understanding that detailed building design has not been completed. Certain elements of the building design such as the building footprint, specific floorplan layout, the number of floors, configuration and orientation of the building roof, and the existence of attached or appurtenant structures (e.g. open-air decks or patios, but not including enclosed outbuildings), among other architectural and design considerations, are subject to market forces and may change prior to and/or during the design and construction of the Phase 1 redevelopment. The podium style construction concept will be kept consistent, and any changes to building design from the

10

The total number of residential lots, lot sizes and lot configurations depicted on Figure 2 are subject to change based on market forces and individual homeowner preference (e.g. it is anticipated that some homeowners may prefer to purchase and consolidate multiple lots for a single residence).

Exact unit quantities may change as Parkland works through its regulatory review.

Parkland is still evaluating the marketability of the lot configurations.

conceptual views presented here will not limit the effectiveness of the podiums to mitigate the potential for vapor intrusion to indoor airspace.

Parkland intends to mitigate the potential for methane fire/explosivity hazards and the potential for vapor intrusion into the indoor airspace of the residences proposed to be constructed in the Phase 1 redevelopment by the use of podium style construction methods. Podium style construction is intended to create a sufficiently open space below the floor systems of the residences such that any potential soil gas from soils underlying the buildings does not pose a hazard to the indoor airspace. The residences will also be provided with redundant methane monitors (or similar multi-gas monitors capable of monitoring for methane) to assess potential combustible atmosphere in the podium space underlying the residences as well as within the residential indoor airspace.

The podium style construction method for the Phase 1 redevelopment is the primary engineering control for which Parkland is seeking approval under this ResAP. Detail regarding the proposed design and the structures proposed to be constructed on the Property in support of this CSM are presented in Sections 3 and 4 below.

2.8.1.1 Single Family Dwellings

The following describes general anticipated construction information for the single-family dwellings:

- General Construction Style podium style construction
- Floor Construction Method metal, wood truss, wood joist, cast-in-place or precast concrete
- Depth Below Grade of Lowest Floor At least 2 feet above grade
- Building Layout as shown in Appendix F
- Building Height maximum of 3 stories
- Foundation Drains not applicable

Single-family dwellings, including any attached garages, will be constructed using a podium style construction method with a minimum of 2 feet of open space between the ground surface and the flooring system underlying the dwelling. Where necessary based on geotechnical conditions in specific areas of the Phase 1 redevelopment, foundations for the podiums will be supported by a pile system¹⁵ that is anticipated to extend to a depth of approximately 15 to 40 feet bgs.

The single-family dwellings will be provided with heating, ventilation and air-conditioning (HVAC) systems typical of residential homes.

2.8.2 Utilities

Figure 10 summarizes a conceptual utility schematic for the proposed Phase 1 redevelopment. Storm sewer piping is shown in green, potable water piping is shown in blue, and sanitary sewer piping is shown in red. Primary underground utilities servicing the development are still being designed, but are estimated to be installed to the following depths below grade:

Storm sewer: approximately 5-8 feet below grade

Foundations for single-family dwellings may also be supported by rigid inclusions if/where appropriate based on geotechnical conditions in the Phase 1 area of the Property.

- Potable water supply: approximately 5-7 feet below grade
- Sanitary sewer: approximately 9 12 feet below grade

Underground utilities servicing individual buildings will be smaller and shallower than the utilities outlined above. As shown in Appendix F, utilities entering the residential buildings in the Phase 1 redevelopment will enter through a common chase and will be provided with a trench dam or other comparable engineering control to prevent the utilities from acting as preferential pathways for vapor flow from the subsurface to indoor airspace.

2.8.3 Other Site Development Features (without Indoor Airspace)

Parkland proposes to construct the following other site development features in the Phase 1 redevelopment, which will not have indoor airspace:

- Public parklet with waterfront access; and
- Approximately 7,600 feet of roadway;

While not relevant to the exposure pathway addressed in this ResAP, we note the above proposed development features here for completeness.

3 Response Activity Design Summary

Section 3.1 provides a summary of the proposed response activity design.

3.1 Response Activity Intent

The intent of the response activity proposed herein is to mitigate the potential for migration of volatile contaminants into the indoor airspace of buildings proposed to be constructed on the Phase 1 Property using a podium style construction method. The response activity design presented in this ResAP is intended to mitigate the potential for exposures via the VI exposure pathway, and the potential for fire and explosivity risks associated with methane in soil and groundwater on the Phase 1 Property. Appendix G includes conceptual design drawings depicting podium style construction for a typical residential building to be constructed on the Phase 1 Property.

Section 3.1.1 presents the design details for the podium style construction concept for a typical residential building and attached garage proposed to be constructed in the Phase 1 redevelopment. The design will be further evaluated and refined during detailed design, and modest deviations may occur from the design presented that do not impact the design elements described in Section 3.1.1 below. Potential deviations may be informed by additional data collection and through evaluating constraints that affect the constructability of the proposed response activity. The design is intended to be adequately developed that, when used in concert with EGLE's experience and with the assumption of good engineering design practice, it will allow for EGLE to complete critical review and evaluation of the concept with certainty that key elements of the proposed response action will be generally implemented as represented.

3.1.1 Podium Design

Podium style construction of the residential buildings on the Phase 1 Property will generally be composed of the following main elements:

- Foundations for the residential buildings and attached garages constructed at a height above grade such that the bottom of the flooring system of the building is a minimum of 2' from grade;
- Openings to ventilate the podium:
 - Located less than 6 inches below the bottom of the floor system
 - Evenly distributed along the length of opposite sides of the building joists
 - o The larger of 1.5 square feet for each 25 linear feet of wall or 1% of the underfloor area
 - Covered with corrosion-resistant wire mesh screens with openings between ¼ inch and
 ½ inch in dimension
- Combustible gas detectors in the podium area and in the indoor airspace above the floor; and
- Plumbing and other utilities placed in trenches sealed with appropriately sized trench dams constructed using a bentonite cement slurry mixture or equivalent.

Podium style construction of residential buildings involves constructing the foundation and flooring system of the buildings to create an open-air space at least 2 feet in height between the bottom of the flooring system and the surrounding grade under the entire footprint of the building, including the garage. Utilities will enter the residential building through a common trench which will be sealed with a trench dam.

Externally mounted instrument enclosures will be provided to house combustible gas detectors. Remote sensing elements from the combustible gas detectors will be located in the podiums and the indoor airspace of the residential buildings and attached garages. Combustible gas detectors will generate audio/visual alarms in the indoor airspace and communicate alarm information to the instrument enclosures.

The instrument enclosures are intended to keep the instruments in operation by preventing access by unauthorized individuals, including individual homeowners. The instrument enclosures will provide a single access point for instrument maintenance. The instrument enclosures will also be provided with the ability to communicate alarm information externally to the third-party O&M service provider, as discussed in Section 4.5.

A conceptual design based on a preliminary building footprint provided by Parkland is depicted in the drawings presented in Appendix G to this ResAP. The approximate location of the remote sensing elements is shown on sheets ENVE-01 and ENVE-02 in Appendix G. Appendix G also includes a cutsheet for an example combustible gas detector that is expected to be similar to the combustible gas meter that would eventually be selected for use in the residential buildings on the Phase 1 Property. The podium style residential buildings will be designed and constructed in accordance with all applicable state and local building codes.

4 Implementation Overview

This section summarizes the implementation plan, including anticipated permits and approvals that will be obtained prior to construction; construction sequencing; due care obligations during construction; construction quality assurance measures; and post-construction monitoring. Observations from implementation, including changes to the design and implementation described in this ResAP, will be included in a Construction Summary Report submitted to EGLE.

4.1 Permit Requirements

All required permits will be obtained by Parkland or on their behalf prior to construction. Necessary permits are anticipated to include soil erosion and sedimentation control permits, building permits and demolition permits (for the water pump house), and, potentially, other permits issued pursuant to Act 451.

4.2 Construction Sequencing

Construction of the proposed response activity will coincide with the sale and wider redevelopment of the Property. Full buildout of the Phase 1 Property as depicted in Figure 2 is anticipated to occur over an approximately 4-to-7-year construction period.

The podium style construction concept in the residential buildings will be designed such that they will be effective at mitigating potential exposures via the VI exposure pathway and potential fire and explosivity risks associated with methane in soil and groundwater on the Property regardless of the overall construction sequencing, and the presence or absence of nearby buildings constructed in the same manner.

4.3 Due Care Obligations During Construction

Construction activities on the Property will comply with applicable health and safety regulations, including the HAZWOPER requirements of 29 CFR 1910,120 and the due care requirements of Section 20107a of Part 201, as applicable to construction workers, residents of adjacent properties, and the general public. Health and safety plans will be developed and implemented during construction, which will include air monitoring as necessary and appropriate to assess potential exposures to VOCs, including methane, and other volatile compounds that may be encountered during subsurface construction. Where necessary and appropriate, engineering or other controls will be implemented to mitigate potential hazards encountered during construction.

An Environmental Management Plan ("EMP") will be developed for the management of construction residuals and groundwater encountered during construction. Construction residuals and groundwater will be managed in accordance with the applicable requirements of Act 451, including, as appropriate Parts 111 (Hazardous Waste Management), 115 (Solid Waste Management), and Part 201, as well as the requirements of the Toxic Substances Control Act (TSCA; 15 U.S.C. §2601 et. Seq. (1976), as applicable.

4.4 Construction Quality Assurance Measures

Parkland will be the owner and developer of the Property until individual parcels of the Property are sold to third-party buyers. Parkland will assure that all engineering controls associated with the response activity are constructed in a manner that is consistent with the finalized ResAP through the use of qualified third-party construction companies and/or environmental professionals authorized by Parkland to perform work at the site. CQA measures will be specified as part of the final design and detail a process to document that the response activity is being implemented in accordance with the approved project plans and specifications.

CQA measures will be consistent with guidance provided in EGLE's April 2025 Guidance Document for Development on or Near Methane Generating Sources, P/BC 2012-102¹⁶, EGLE's May 2013 EGLE Guidance Document for the Vapor Intrusion Pathway, and EGLE's January 2025 Guidance Document for the Volatilization to the Indoor Air Pathway (VIAP) Volume 5: Response Activity for the VIAP, (as amended).

CQA measures will include construction oversight in the form of documentation of daily work progress through field notes and photographs, documentation of relevant certifications/qualifications for certain products (e.g. combustible gas meter).

CQA oversight will include, but not be limited to, the following components of the response activity:

- Height above ground surface and openings in the podium for residential buildings in accordance with guidance documents cited in this section;
- Sealing of utility conduits in accordance with guidance documents cited in this section;
- Placement and physical installation of instruments and remote sensors in accordance with the instrument manufacturer's recommendations;
- Installation of back-up power systems for the combustible gas detectors; and
- Labeling of system components as applicable.

4.5 Post-Construction Operation and Maintenance

A post-construction operation and maintenance ("O&M") plan for the response activities presented herein will be developed and submitted to EGLE for review within six months of commencement of construction on the Phase 1 Property. The O&M plan will include, but will not be limited to the following:

- As-built documents for the response activity design for the buildings discussed in Section 2.8.1;
- Preventative and routine maintenance requirements;
- Recommended inspection and calibration frequencies for instrumentation based on the instrument manufacturer's recommendations;
- Documentation for completing maintenance and inspections; and
- Procedures for handling alarms from the combustible gas meters including for conditions that require building evacuation and notification of the local fire department or other first responders.

A draft Declaration of Restrictive Covenant ("RC") intended to be recorded on the Phase 1 Property is also enclosed as a proposed institutional control to assure that the engineering controls are consistently and perpetually constructed, operated, maintained, and monitored. The draft RC will be further refined and recorded prior to the closing of the sale of any portion of the Phase 1 Property by Parkland. The RC will run with the Phase 1 Property and will be applicable to each parcel of property as the Phase 1 Property is subdivided. The RC will be one of the mechanisms by which future property owners of the Phase 1 Property are made aware of environmental contamination on the Phase 1 Property and the existence and necessity of the podium style construction for residential buildings on the Phase 1 Property in addition to the disclosures within the Buyer's purchasing documents and general materials distributed by the Developer during the development phase of the Phase 1 Property. The RC is intended to create an enforceable mechanism by which future Phase 1 Property owners are bound to fund and otherwise allow completion of the O&M activities for the podium style construction described in this ResAP and in the RC.

15

Los Angeles Department of Building and Safety. Methane Hazard Mitigation Standard Plan: Simplified Method for Small Additions. P/BC 2014-102. 2014.

Parkland proposes to create a non-profit business entity that will be responsible for carrying out O&M obligations associated with the proposed engineering controls in this ResAP. This dedicated business entity will be put in place prior to the closing of the sale of any portions of the Phase 1 Property and it will generate funds through collection of dues from the owners of the Phase 1 Property to fund O&M activities, including but not limited to routine system maintenance, repair and replacement of equipment, and reporting obligations. This nonprofit business entity shall have the ability to implement regulations among the owners of the Property consistent with the requirements of the RC, and the entity shall have the ability to place and enforce liens against owners' interest in the Phase 1 Property to ensure the adequate and timely collection of dues. O&M activities will be completed by an appropriately qualified and experienced service provider retained by the non-profit business entity created for this purpose. Individual homeowners will not be relied upon to complete O&M activities associated with engineering controls. Any service providers retained by the non-profit business entity will be qualified and licensed to the extent necessary under applicable Michigan law.

4.5.1 O&M Activities

O&M activities will include, but will not be limited to, the following:

- Preparation and issuance of annual reports to EGLE summarizing construction progress, and the status of all podium style construction in the Phase 1 Property,
- Physical inspection of instrumentation relevant to the response activity in every residential home in the Phase 1 Property on a not less than an annual basis;
- Timely completion of necessary preventative maintenance in accordance with manufacturers' recommendations for instruments associated with the residences:
- Routine calibration of instrument sensors and other instrument components in accordance with the instrument manufacturer's recommendations; and
- Prompt response to alarms received from the combustible gas detectors and completion of associated system repairs and maintenance, as applicable.

4.5.1.1 **O&M** Alarm Levels for Combustible Gas Detectors

Preliminary alarm levels for the combustible gas detectors are summarized in Table 1 below. As discussed in Section 3.1, alarms from the combustible gas detectors in every residential home will be transferred via telemetry to experienced service providers retained by the non-profit business entity to perform O&M. The service provider will receive an email, text-alert, and/or phone call depending on the type of alarm. In the event that an alarm from a combustible gas detector is greater than 10% LEL, the combustible gas detectors will sound audio and visual alarms in the indoor airspace, and a service provider will be alerted and contractually obligated to promptly respond - regardless of the time of day or day of the year.

Table 1 O&M Alarm Levels for Combustible Gas Detectors

Instrumentation	Communicated Information	Alarm Level ³	Action
Combustible Gas Detectors	Combustible Atmosphere (%LEL²)	4%	O&M service provider is notified, data for notifying system is reviewed.
		8%	O&M service provider is notified and investigation of notifying system is scheduled
		Greater than 10%	Audio/visual alarm sounds in the indoor airspace
			Owner/occupant is immediately notified by O&M service provider, structure evacuated, local fire department notified

Notes:

- 1) Inches water column (W.C.)
- 2) Percent of the lower explosive limit (LEL)
- 3) The alarm levels for the combustible gas detectors are based on a conservative indoor air action level of 10% of the LEL. A typical combustible gas detector may have a sensitivity of 1% LEL with an accuracy of +/- 2% LEL.

4.5.1.2 O&M Long-Term Monitoring Frequency for Combustible Gas Detectors

A long-term monitoring frequency will be adopted and is summarized in Table 2. During the long-term monitoring period, combustible gas detector alarms discussed in Section 4.5.1.1 will continue to be evaluated by service providers retained by the non-profit business entity to perform O&M.

Table 2 Long-Term Monitoring Frequency for Combustible Gas Detectors

Monitored Information	Long-Term Monitoring Frequency
Visual Inspection of Equipment and Labels	Yearly

5 Draft Declaration of Restrictive Covenant

A draft RC proposed to be recorded for the Phase 1 Property is presented as Appendix H. The draft RC is intended to supplement the existing Declaration of Restrictive Covenant (Liber 4095, Page 639, Muskegon County Register of Deeds) on the Phase 1 Property to address the due care measures described in this ResAP. The draft RC will be further refined and recorded prior to the closing of the sale of any portion of the Phase 1 Property by Parkland. The RC, once recorded, will run with the Phase 1 Property and be applicable to subdivision of the Phase 1 Property, thereby creating an enforceable mechanism by which future Phase 1 Property owners are bound to complete and fund performance of the O&M activities described in this ResAP. The RC, together with the response activity proposed in this ResAP, establishes legally-enforceable use restrictions and engineering controls that, subject to EGLE review and approval, meet the requirements of Part 201 and, in particular, further support the allowance for deed restrictions or "alternative instruments" as provided under Section 20121 of Part 201.

6 Implementation Schedule

The schedule for implementing the response activity is dependent on the timing of approval of this ResAP and timing for construction of the proposed development features. While the schedule is subject to change based on these known constraints, Table 3 details Parkland's currently aspirational schedule.

Table 3 Implementation Schedule

Anticipated Timeframe	Implementation Component
July 2025	Submittal of ResAP to EGLE
August 2025	Receive EGLE Response to ResAP/ResAP Approval
September 2025	Public Participation (if required)
November 2025	EGLE approval of ResAP (if public participation required)
December to April 2026	Detailed design of development features

Parkland and Pure Muskegon seek to consummate their transaction of the Property by their September date. The aspirational schedule presented above reflects that intent.

Specific timing of development construction will be determined based on market conditions and, as noted in Section 4.2, is expected to occur over a four-to-seven-year period. Parkland will provide periodic updates to EGLE regarding proposed construction timing and associated implementation of the response activities described here.

7 References

- USEPA, 1993. Radon Reduction Techniques for Existing Detached Houses, Technical Guidance for Active Soil Depressurization Systems. Dated October 1993. EPA/625/R-93/011.
- ITRC, 2007. Vapor Intrusion Pathway: A Practical Guideline. The Interstate Technology & Regulatory Council Vapor Intrusion Team. Dated January 2007.
- LEI, 2012. Baseline Assessment and Response Plan, Melching, Inc., 2400 Lakeshore Drive, Muskegon, Michigan. Prepared for Michigan Department of Environmental Quality. Dated May 2012.
- ERM, 2016a. Phase I Environmental Site Assessment, 2400 Lakeshore Drive, Muskegon, Michigan 49441. Prepared on behalf of Pure Muskegon, LLC. Dated July 2016.
- ERM, 2016b. Baseline Environmental Assessment, 2400 Lakeshore Drive, Muskegon, Michigan 49441. ERM, September 2016.
- Replacement Declaration of Environmental Covenants, Release and Indemnity dated July 29, 2016, and recorded in the Muskegon County Register of Deeds on August 8, 2016, in L 4095, P 639 (Declaration).
- ERM, 2018. Documentation of Due Care Compliance, Windward Pointe/ Former Sappi Fine Paper Property. 2400 Lakeshore Drive, Muskegon Michigan. ERM, May 16, 2017, Revision 1 April 4, 2018.
- Barr, 2022a. 2022 Supplemental Environmental Investigation Summary Report 2400 Lakeshore Drive.

 Prepared for Pure Muskegon, LLC. Barr Engineering, December 2022.
- Barr, 2022b. Draft Preliminary Geotechnical Investigation Report, 2400 Lakeshore Drive, Muskegon, Michigan. Prepared for Pure Muskegon, LLC. Barr Engineering, December 2022.
- Barr, 2024. 2024 Supplemental Methane Investigation Results. Prepared for Pure Muskegon, LLC. Barr Engineering, May 2024.

								Location	DS-1	DS-2	GLC-BS-1	GLC-BS-2	GLC-BS-3	GLC-SW-1	GLC-SW-2	GLC-SW-3
								Date	3/01/2017	3/01/2017	12/09/2002	12/09/2002	12/09/2002	12/09/2002	12/09/2002	12/09/2002
						Depth										
								Sample Type		N	N	N	N	N	N	N
		I	MDEQ Soil	Statewide	Table 1 -	Table 2 -		1								
			Target	Default	Nonresidential 12-	Nonresidential 12-	Table 3 -	Table 4 -								
			Detection	Background	hour Soil	hour Soil	Residential Soil	Residential Soil								
Parameter	CAS#	Units	Limits	Levels	(SSVIAC)	(SSVIAC)	(SSVIAC)	(SSVIAC)								
Last Updated			03/01/2016	12/30/2013	12/09/2024	12/09/2024	12/09/2024	12/09/2024								
Exceedance Key					Bold	<u>Underline</u>	Shade	Border								
Metals																
Mercury	7439-97-6	ug/kg	50	130 B,Z	1200 nc	790 nc	22 (M)nc	55 nc								-
d Semivolatile Organic Compounds																
2-Methylnaphthalene	91-57-6	ug/kg	330		90000 nc	60000 nc	1700 nc	4200 nc								
Naphthalene	91-20-3	ug/kg	330		5700 ca	3800 ca	67 (M)ca	160 (M)ca				-	-			
Phenanthrene	85-01-8	ug/kg	330		88000 nc	58000 nc	1700 nc	4100 nc		-		-	-			
Volatile Organic Compounds																
1,2,4-Trimethylbenzene	95-63-6	ug/kg	100		7800 (JT)nc	5200 (JT)nc	150 (JT)nc	360 (JT)nc								
1,3,5-Trimethylbenzene	108-67-8	ug/kg	100		5400 (JT)nc	3600 (JT)nc	100 (JT)nc	250 (JT)nc								
2-Methylnaphthalene	91-57-6	ug/kg	330		90000 nc	60000 nc	1700 nc	4200 nc								
Benzene	71-43-2	ug/kg	50		140 ca	<u>94 ca</u>	1.7 (M)ca	4.1 (M)ca								
Butylbenzene	104-51-8	ug/kg	50		29000 nc	20000 nc	560 nc	1400 nc								
Ethyl benzene	100-41-4	ug/kg	50		1000 ca	680 ca	12 (M)ca	30 (M)ca								-
Naphthalene	91-20-3	ug/kg	330		5700 ca	3800 ca	67 (M)ca	160 (M)ca								
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg	100		1000 nc	670 nc	19 (M)nc	47 (M)nc								
Xylene, total	1330-20-7	ug/kg	150		15000 (J)nc	9900 (J)nc	280 (J)nc	690 (J)nc		-						-

Legend

Site-specific volatilization to indoor air criteria (VIAC) developed under Part 201 or site-specific target levels (SSTLs) developed under Part 213 of the Natural Resources and Environmental Protection Act, 1994 PA 451 as amended, which represent EGLE's determination of values that reflect best available information regarding the toxicity and exposure risks posed by the hazardous substances present at the 2400 Lakeshore Drive, Muskegon (Muskegon County), Michigan (61000066) facility.

Footnotes

- N Sample Type: Normal
- FD Sample Type: Field Duplicate
- J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quantitation limits.
- The result is an estimated quantity and may be biased low.
- J- The result is an estimated quantity and may be biased lag.

 J+ The result is an estimated quantity and may be biased
- high.
 U The analyte was analyzed for, but was not detected.

			GLC-SW-4	GLC-SW-5	Lime-SB-01	Lime-SB-01	Lime-SB-02	Lime-SB-02	Lime-SB-03	Lime-SB-03	LM-1	LM-2	LM-3	LS-1 SS	LS-2 SS	LSB-1	LSB-2 SS	LSB-3 SS	LSB-4 SS	RR-1	RR-2	RR-3
				12/09/2002		4/10/2019	4/10/2019	4/10/2019	4/10/2019											2/28/2017	_	
			12/09/2002	12/09/2002	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	3/01/2017	3/01/2017	3/01/2017	1/19/2012	1/19/2012	4/03/2014	4/03/2014	4/03/2014				
																				1.5 - 2.5 ft	0.5 - 1.5 ft	0.5 - 1.5 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																				
Last Updated																						
Exceedance Key																						
Metals																						
Mercury	7439-97-6	ug/kg								-		-		ND	ND	< 50	< 50	< 50	< 50	ND	ND	59
Semivolatile Organic Compounds																						
2-Methylnaphthalene	91-57-6	ug/kg			-			_		-		-						-		550	950	390
Naphthalene	91-20-3	ug/kg	-	-				-	-	-										470	810	ND
Phenanthrene	85-01-8	ug/kg						-		-								-		ND	ND	ND
Volatile Organic Compounds																						
1,2,4-Trimethylbenzene	95-63-6	ug/kg		-				-	-	-						-		-		ND	ND	ND
1,3,5-Trimethylbenzene	108-67-8	ug/kg						-		-								-		ND	ND	ND
2-Methylnaphthalene	91-57-6	ug/kg																		ND	ND	ND
Benzene	71-43-2	ug/kg										-								ND	ND	ND
Butylbenzene	104-51-8	ug/kg								-		-								ND	ND	ND
Ethyl benzene	100-41-4	ug/kg						-		-		-				-				ND	ND	ND
Naphthalene	91-20-3	ug/kg						-	-	-				-				-		ND	ND	ND
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg							-	-										ND	ND	ND
Xylene, total	1330-20-7	ug/kg		-				-		-								_		ND	ND	ND

			SB-22-01	SB-22-01	SB-22-02	SB-22-02	SB-22-03	SB-22-04	SB-22-04	SB-22-05	SB-22-05	SB-22-06	SB-22-06	SB-22-07	SB-22-07	SB-22-08	SB-2	22-08	SB-22-09	SB-22-09	SB-22-10	SB-22-10	SB-22-11	SB-22-11
			6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/14/2022	6/14/2022	6/14/2022	6/14	2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022
			1 - 2 ft	2 - 3 ft	0 - 1 ft	2 - 3 ft	0 - 1 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft	5 - 6 ft	0 - 1 ft	2-3ft	1.5 - 2.5 ft	25-35ft	25-35ft	0 - 1 ft	2 - 3 ft	1 - 2 ft	3 - 4 ft	1 - 2 ft	3 - 4 ft
				_ ,,		_ ,	N	N 2.1					.,			L.	N N	FD	•					
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FU	N	N	N	N	N	N
																								1
Parameter	CAS#	Units																						1
Last Updated																								
Exceedance Key																								
Metals																								
Mercury	7439-97-6	ug/kg	54	< 50 U	114	< 50 U	< 50 U	< 50 U	1195	< 50 U	< 50 J	< 50 U	< 50 U	148	130	104	102	191	< 50 U	116				
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg												-				-						
Naphthalene	91-20-3	ug/kg												-			-	-		-				
Phenanthrene	85-01-8	ug/kg												-				-						
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	-											-				-						
1,3,5-Trimethylbenzene	108-67-8	ug/kg																						
2-Methylnaphthalene	91-57-6	ug/kg																						
Benzene	71-43-2	ug/kg																						
Butylbenzene	104-51-8	ug/kg												-										
Ethyl benzene	100-41-4	ug/kg								-		-		-		-	-							
Naphthalene	91-20-3	ug/kg												-				-						
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg												-		-		-						
Xylene, total	1330-20-7	ug/kg		-	-				-			-		-			-	-		-				

			SB-22-12	SB-22-12	SB-22-13	SB-22-13	SB-22-14	SB-22-15	SB-2	22-15	SB-22-16	SB-22-16	SB-22-17	SB-22-17	SB-2	22-18	SB-22-18	SB-22-19	SB-22-19	SB-22-20	SB-22-20	SB-2	22-21	SB-22-21	SB-22-22
			6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/	2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/	/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/	2022	6/14/2022	6/15/2022
			0 - 1 ft	2 - 3 ft	0 - 1 ft	4 - 5 ft	4 - 5 ft		3 - 4 ft								3.5 - 4.5 ft		4 - 4.8 ft				0.5 - 1.5 ft		2 - 3 ft
			0-110		0-11	4-5 H	4.211				0-11	3-411		3.3 - 4.3 10	0.5 - 1.5 1		3.5 - 4.5 10	1 - 2 11	4 - 4.0 11	3-411		0.5 - 1.5 10			2.311
			N	N	N	N	N	N	N	FD	N	N	N	N	N	FD	N	N	N	N	N	N	FD	N	N
Parameter	CAS#	Units																							
Last Updated																									
Exceedance Key																									
Metals																									
Mercury	7439-97-6	ug/kg	< 50 U	< 50 U	< 50 U	205	< 50 U	< 50 U	< 50 U	72	< 50 U	< 50 U	< 50 U	66	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
Semivolatile Organic Compounds																									
2-Methylnaphthalene	91-57-6	ug/kg		-																					-
Naphthalene	91-20-3	ug/kg	-	-	-				-			-													
Phenanthrene	85-01-8	ug/kg										-													
Volatile Organic Compounds																									
1,2,4-Trimethylbenzene	95-63-6	ug/kg							-			-													
1,3,5-Trimethylbenzene	108-67-8	ug/kg																							
2-Methylnaphthalene	91-57-6	ug/kg																							
Benzene	71-43-2	ug/kg										-													
Butylbenzene	104-51-8	ug/kg																							
Ethyl benzene	100-41-4	ug/kg																							
Naphthalene	91-20-3	ug/kg		-																					
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg		-																					
Xylene, total	1330-20-7	ug/kg		-																					

			SB-22-22	SB-22-23	SB-2	22-23	SB-22-24	SB-22-24	SB-22-25	SB-22-25	SB-22-26	SB-22-26	SB-22-27	SB-22-27	SB-22-28	SB-22-28	SB-22-29	SB-22-29	SB-22-30	SB-22-30	SB-22-31	SB-2	22-31	SB-22-32	SB-2
			6/15/2022	6/15/2022	6/15/	2022	6/15/2022	6/15/2022	6/15/2022	6/15/2022	6/15/2022	6/15/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2	2022	6/14/2022	6/14/
			4 - 5 ft	0-1ft	3.5 - 4.5 ft	3.5 - 4.5 ft	0 - 1 ft	3 - 4 ft	0 - 1 ft	3.5 - 4.5 ft	0 - 1 ft	2.5 - 3.5 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft	1 - 2 ft	1 - 2 ft	3 - 4 ft	0-1ft	1 - 2 ft	1 - 2 ft	4 - 5 ft	4 - 5 ft	0 - 1 ft	3.5 - 4.5 ft
			N	l N	N	FD	N	N	N	l N	N	N	N	N	l N	N	N	N	l N	l N	N	N	FD	N	N N
Parameter	CAS#	Units																							
Last Updated																									
Exceedance Key																									
Metals																									
Mercury	7439-97-6	ug/kg	< 50 U	< 50 U	72	< 50 U	< 50 U	72	92	< 50 U	76	< 50 U	95	54	126	94	< 50 U	74	108	< 50 U	< 50 U				
Semivolatile Organic Compounds																									
2-Methylnaphthalene	91-57-6	ug/kg				-	-	-			-														
Naphthalene	91-20-3	ug/kg					-	-			_								-						
Phenanthrene	85-01-8	ug/kg					-	-			_								-	-					
Volatile Organic Compounds																									
1,2,4-Trimethylbenzene	95-63-6	ug/kg						-			-			-											
1,3,5-Trimethylbenzene	108-67-8	ug/kg				-	-	-			-														
2-Methylnaphthalene	91-57-6	ug/kg				-	-	-			-														
Benzene	71-43-2	ug/kg						-			-														
Butylbenzene	104-51-8	ug/kg					-													-					
Ethyl benzene	100-41-4	ug/kg					-													-					
Naphthalene	91-20-3	ug/kg	-				-	-			-			-						-					
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg					-																		
Xylene, total	1330-20-7	ug/kg					-																		-

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			2-32	SS-1	SS-1	SS-2	SS-2	SS-3	SS-3	SS-4	SS-4	SS-5	SS-5	SS-6	SS-6	SS-7	SS-7	SS-8	SS-8	SS-9	SS-9	SS-10	SS-10	SS-11
			2022	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017
			3.5 - 4.5 ft	0 - 1 ft	3 - 4 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1.5 - 2.5 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft		0 - 1 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft
			FD	N	l N	N	N I	N	l N	N	N	N	N	N	N	N	N	l N	N	N	N	N	N	N
																								1
																								1
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
Metals																								
Mercury	7439-97-6	ug/kg	< 50 U	-	ND		ND		ND		ND		ND	-	ND		ND	-	ND	ND			ND	
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg			ND		ND		ND		410		ND		ND		ND		ND	ND	-		2100	
Naphthalene	91-20-3	ug/kg			ND	-	ND		ND		ND	ND	-		1400									
Phenanthrene	85-01-8	ug/kg			ND		ND		330		610		ND		ND		ND		ND	ND			410	
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg			ND	-	ND		ND	-	ND	ND	-		220									
1,3,5-Trimethylbenzene	108-67-8	ug/kg			ND		ND		ND		ND	-	ND		ND	-	ND	-	ND	ND	-		ND	
2-Methylnaphthalene	91-57-6	ug/kg			ND		ND		ND		ND	ND			ND									
Benzene	71-43-2	ug/kg			ND		ND		ND		ND	ND			290									
Butylbenzene	104-51-8	ug/kg			ND		ND		ND		ND	ND			ND									
Ethyl benzene	100-41-4	ug/kg			ND		ND		ND		ND	ND			130									
Naphthalene	91-20-3	ug/kg			ND	-	ND	-	ND	-	ND	ND		'	ND									
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg			ND		100	1	ND		ND	ND	-		ND									
Xylene, total	1330-20-7	ug/kg			ND		ND		ND		350		ND	-	ND	-	ND		ND	ND			840	

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			SS-11	SS-12	SS-12	SS-13	SS-13	SS-14	SS-14	SS-15	SS-15	SS-16	SS-16	SS-17	SS-17	SS-18	SS-18	SS-19	SS-19	SS-20	SS-20	SSB-2/UT-2	T-8	TB-3
			3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	11/18/2011	7/26/2017	7/25/2017
																							1720/2011	
			1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	1.5 - 2.5 ft		5 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
Metals																								
Mercury	7439-97-6	ug/kg	ND		ND		ND		1100		ND		ND	-	84		ND		85		280	120	390	ND
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	890		ND		ND	ND																
Naphthalene	91-20-3	ug/kg	ND		ND		ND		ND	-	ND		ND	-	ND		ND		ND	-	ND	ND		
Phenanthrene	85-01-8	ug/kg	430		ND		1600		ND	ND	ND	ND												
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND		ND		ND		ND	-	ND		ND	-	ND		170	-	ND	-	ND		ND	ND
1,3,5-Trimethylbenzene	108-67-8	ug/kg	ND		ND	ND																		
2-Methylnaphthalene	91-57-6	ug/kg	ND		ND	ND																		
Benzene	71-43-2	ug/kg	ND																					
Butylbenzene	104-51-8	ug/kg	ND		ND	ND																		
Ethyl benzene	100-41-4	ug/kg	ND		ND	ND																		
Naphthalene	91-20-3	ug/kg	560		ND		ND		ND	-	ND		ND	-	ND		ND	-	ND	-	ND		ND	ND
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg	ND		ND	-	ND		ND		ND	-	ND											
Xylene, total	1330-20-7	ug/kg	200		ND	-	ND		ND	-	ND	-	ND		ND	ND								

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			TB-4	TB-5	TB-6	TB-9	TB-10	TB-13	TB-15	TB-18	TP-1	TP-1	TP-1	TP-2	TP-2	TP-3	TP-4	TP-4	TP-5	TP-6	TP-6	TP-7	TP-7	TP-8
														_	_	-			-				-	
			7/24/2017	7/25/2017	7/25/2017	7/26/2017	7/26/2017	7/27/2017	7/28/2017	7/28/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017
			5 ft	5 ft	2 ft	5 ft	7 ft	5 ft	5 ft	5 ft	2 - 4 ft	6 ft	9 - 9.5 ft	2 ft	12 ft	6 ft	2 ft	6 ft	8 ft	2 ft	12 ft	2 ft	6.5 ft	2 ft
			l N	l N	l N	N	l N	l N	N	l N	N	l N	N	l N	N	N	l N	N	l N	N	N	l N	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
Metals				1																				
Mercury	7439-97-6	ug/kg	520	ND	ND	68	61	ND	71	440		ND	ND	ND	340	ND	ND	ND	ND	ND		ND	77	ND
Semivolatile Organic Compounds				Ī																				
2-Methylnaphthalene	91-57-6	ug/kg	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Naphthalene	91-20-3	ug/kg		-																	-		-	-
Phenanthrene	85-01-8	ug/kg	1100	ND	ND	ND	ND	ND	730	ND		ND	ND	ND	ND	ND	ND	2800	ND	ND	510	ND	ND	ND
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
1,3,5-Trimethylbenzene	108-67-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	ND	ND	ND	600	1000	ND	ND	ND	ND	ND										
Benzene	71-43-2	ug/kg																						
Butylbenzene	104-51-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
Ethyl benzene	100-41-4	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
Naphthalene	91-20-3	ug/kg	ND	ND	ND	ND	ND	3600	1400	ND	ND	ND	ND	ND										
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg																						
Xylene, total	1330-20-7	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			TP-8	TP-8	TP-9	TP-10	TP-11	TP-11	TP-12	TP-12	TP-13	TP-13	TP-14	TP-15	TP-16	TP-16	TP-17	TP-17	TP-18	TP-18	TP-18	TP-18	TP-19	TP-19
			1/09/2017	1/09/2017	1/09/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/23/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017
			4 ft	12 ft	4 ft	3.5 ft	2.5 ft	8 ft	3.5 ft	7 ft	2.5 ft	8 ft	10 ft	2.5 ft	1 ft	8 ft	2.5 ft	7 ft	5 ft	7 ft	9.5 ft	11 ft	2 ft	5.5 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
Metals																								
Mercury	7439-97-6	ug/kg	91	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	800	220	ND	ND	ND	ND	77	ND	59
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND	6900	2300	ND	ND	ND																
Naphthalene	91-20-3	ug/kg		-			-										-				-			
Phenanthrene	85-01-8	ug/kg	ND	4300	2100	ND	ND	ND																
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	140	ND																			
1,3,5-Trimethylbenzene	108-67-8	ug/kg	ND	140	ND																			
2-Methylnaphthalene	91-57-6	ug/kg	ND	1500	ND	ND	ND	ND	ND	ND	1200	ND	ND	ND										
Benzene	71-43-2	ug/kg																						
Butylbenzene	104-51-8	ug/kg	ND																					
Ethyl benzene	100-41-4	ug/kg	ND	100	ND																			
Naphthalene	91-20-3	ug/kg	ND	360	ND																			
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg																						
Xylene, total	1330-20-7	ug/kg	ND	380	380	ND																		

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			TP-19	TP-20	TP-20	TP-20	TP-21	TP-21	TP-22	TP-22	TP-23	TP-23	TP-24	TP-24	TP-25	TP-25	TP-26	TP-26	TP-27	TP-28	TP-28	TP-29	TP-29	TP-30
			1/11/2017	1/11/2017		1/11/2017	1/11/2017	1/11/2017			1/11/2017			1/11/2017				1/12/2017			1/12/2017			1/12/2017
					1/11/2017					1/11/2017			1/11/2017			1/12/2017	1/12/2017		1/12/2017	1/12/2017	1/12/2017	1/12/2017		1/12/2017
			12 ft	2.5 ft	9 ft	15 ft	2.5 ft	13 ft	2 ft	6.5 ft	3 ft	5.5 ft	2 ft	15 ft	2 ft	13 ft	2 ft	16 ft	11 ft	2 ft	7 ft	2 ft	10 ft	2 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
Metals																								
Mercury	7439-97-6	ug/kg	200	ND	ND	ND	ND	ND	1000		ND	81	ND	ND	0.092	0.14	0.13	ND	0.14	0.053	0.062	0.076	ND	0.052
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	940	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	750	ND	ND	ND	ND	ND
Naphthalene	91-20-3	ug/kg					-										-		-		-			
Phenanthrene	85-01-8	ug/kg	ND	ND	990	ND	ND	ND	27000	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	440
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	690	ND	850	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	3700	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	108-67-8	ug/kg	410	ND	250	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	1000	ND	ND	ND	ND	ND
2-Methylnaphthalene	91-57-6	ug/kg	2100	ND	4600	ND	ND	ND	ND		ND	ND	ND	ND	ND	580	ND	ND	10000	ND	ND	ND	ND	ND
Benzene	71-43-2	ug/kg																						
Butylbenzene	104-51-8	ug/kg	ND	ND	160	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	2400	ND	ND	ND	ND	ND
Ethyl benzene	100-41-4	ug/kg	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	240	ND	ND	ND	ND	ND
Naphthalene	91-20-3	ug/kg	ND	ND	830	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	2800	ND	ND	ND	ND	ND
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg																						
Xylene, total	1330-20-7	ug/kg	ND	ND	530	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	680	ND	ND	ND	ND	ND

Large Table 1
Summary of Analytical Results for Soil Samples Screened Against SSVIAC
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			TP-30	TP-31	TP-31 Sidewall	TP-32	TP-32	TP-32	TP-33	TP-33	TP-34	TP-34	TW//D 40 E 66	TW//D 40 W 66	TW//D 20 E 66	TWIND 20 W/ CC	TW//D 24 E 66	TWVP-21-W-SS	TWVD 22 E CC
			1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019
			8 ft	10 ft		2.5 ft	9 ft	15 ft	2 ft	11 ft	3 ft	9 ft	0.5 ft	0.5 ft	0.5 ft	0.5 ft	0.5 ft	0.5 ft	0.5 ft
			N	N	N	N	l N	N	N	N	N	l N	N	l N	l N	l N	l N	l n	N
			.,	.,	.,				.,				.,		.,	.,		.,	
Parameter	CAS#	Units																	
Last Updated																			
Exceedance Key																			
Metals																			
Mercury	7439-97-6	ug/kg	ND	ND	0.075	0.17	0.11	ND	ND	ND	ND	ND	56	67	80	55	120	130	< 50.0 U
Semivolatile Organic Compounds																			
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 590.0 U	< 330.0 U	< 1100.0 U	< 1100.0 U	< 450.0 U	< 450.0 U	< 330.0 U
Naphthalene	91-20-3	ug/kg		-	-								< 590.0 U	< 330.0 U	< 1100.0 U	< 1100.0 U	< 450.0 U	< 450.0 U	< 330.0 U
Phenanthrene	85-01-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	590	< 330.0 U	< 420.0 U	< 450.0 U	480	520	< 330.0 U
Volatile Organic Compounds																			
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,3,5-Trimethylbenzene	108-67-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Benzene	71-43-2	ug/kg																	
Butylbenzene	104-51-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Ethyl benzene	100-41-4	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Naphthalene	91-20-3	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg																	
Xylene, total	1330-20-7	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							

			TWVP-22-W-SS	TWVP-23-E-SS	TWVP-23-W-SS
			4/10/2019	4/10/2019	4/10/2019
			0.5 ft	0.5 ft	0.5 ft
			N N	N	N
			N	N	N
Parameter	CAS#	Units			
Last Updated					
Exceedance Key					
Metals					
Mercury	7439-97-6	ug/kg	< 50.0 U	110	< 50.0 U
Semivolatile Organic Compounds					
2-Methylnaphthalene	91-57-6	ug/kg	< 430.0 U	< 540.0 U	< 330.0 U
Naphthalene	91-20-3	ug/kg	< 430.0 U	< 540.0 U	< 330.0 U
Phenanthrene	85-01-8	ug/kg	< 330.0 U	720	< 330.0 U
Volatile Organic Compounds					
1,2,4-Trimethylbenzene	95-63-6	ug/kg	-		-
1,3,5-Trimethylbenzene	108-67-8	ug/kg			-
2-Methylnaphthalene	91-57-6	ug/kg			
Benzene	71-43-2	ug/kg			
Butylbenzene	104-51-8	ug/kg	-		-
Ethyl benzene	100-41-4	ug/kg	-		-
Naphthalene	91-20-3	ug/kg	-		-
Trichlorofluoromethane (Freon-11)	75-69-4	ug/kg			-
Xylene, total	1330-20-7	ug/kg	-		-

							Location	MW-01I	MW-01I	MW-01I	MW-01I	MW-01I	MW-01S	MW-01S	MW-01S
							Date	5/02/2019	9/13/2019	12/09/2019	3/17/2020	4/21/2022	5/02/2019	9/13/2019	12/09/2019
							Sample Type	N	N	N	N	N	N	N	N
			MDEQ Water	Table 1 - Nonresidential	Table 2 - Nonresidential										
			Target	12-hour Shallow	12-hour Shallow	Table 3 - Residential	Table 4 - Residential								
			Detection	Groundwater	Groundwater	Shallow Groundwater	Shallow Groundwater								
Parameter	CAS #	Units	Limits	(SSVIAC)	(SSVIAC)	(SSVIAC)	(SSVIAC)								
Last Updated			03/01/2016	12/09/2024	12/09/2024	12/09/2024	12/09/2024								
d Exceedance Key				Bold	<u>Underline</u>	Shade	Border								
General Parameters															
Methane	74-82-8	ug/l	500	10000 (AA)	10000 (AA)	10000 (AA)	10000 (AA)	-			44000	-			
Nitrogen, ammonia, as N	7664-41-7	ug/l	25	5900 (FF)st	4600 (FF)st	1900 (FF)st	2100 (FF)st	<u>5900</u>	5000	<u>5200</u>	-		18000	13000	11000
Total Metals															
Mercury	7439-97-6	ua/l	0.001	0.79 nc	0.61 nc	0.088 nc	0.095 nc	< 0.20 U		< 0.20 U		< 0.2 U	< 0.20 U		< 0.20 U

Legend

Site-specific volatilization to indoor air criteria (VIAC) developed under Part 201 or site-specific target levels (SSTLs) developed under Part 213 of the Natural Resources and Environmental Protection Act, 1994 PA 451 as amended, which represent EGLE's determination of values that reflect best available information regarding the toxicity and exposure risks posed by the hazardous substances present at the 2400 Lakeshore Drive, Muskegon (Muskegon County), Michigan (61000066) facility.

Footnotes

N Sample Type: Normal

FD Sample Type: Field Duplicate
ND Not detected

- $\label{eq:J} \textbf{J} \quad \text{Estimated detected value. Either certain QC criteria were} \\ \text{not met or the concentration is between the laboratory's} \\ \text{detection and quantitation limits}.$
- **J+** The result is an estimated quantity and may be biased high.

PR Present

U The analyte was analyzed for, but was not detected.

			MW-01S	MW-01S	MW-02I	MW-02I	MW-02I	MW-02I	MW-02I	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-03D	MW-03D	MW-03D	MW-03D	MW-03I	MW-03I	MW-03I	MW-	-031	MW-03S	MW-03S	MW-03S
							12/10/2019															4/22/2		5/02/2019		
			N N	N N	N N	NI NI	N N	NI NI	NI NI	NI NI	NI NI	N N	NI NI	N N	NI NI	NI NI	N N	N N	NI NI	N N	N N	N I	FD	N N	N I O Z O Z O	N N
			N	N	N	N	N	IN	N	N	N	N	14	N	N	N	N	N	IN	N	N	N	FD	N	N	N
Parameter	CAS#	Units																								
Last Updated																										
Exceedance Key																										
General Parameters																										
Methane	74-82-8	ug/l	350000	-				100000					360000			240000	10000	-		100	53				5200	3600
Nitrogen, ammonia, as N	7664-41-7	ug/l		-	<u>5500</u>	4100	3400	-	-	11000	10000	8800	-		3300	3000			3500	990		-		13000	6700	
Total Metals																										
Mercury	7439-97-6	ug/l		< 0.2 U	< 0.20 U		< 0.20 U		< 0.2 U	< 0.20 U		< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.2 U	< 0.20 U	< 0.20 U	

			MW-03S	MW-04D	MW-04D	MW-04D	MW-04D	MW-041	MW-04I	MW-041	MW-041	MW-04S	MW-04S	MW-04S	MW-04S	MW-05D	MW-05D	MW-05D	MW-05D	MW-05I	MW-05I	MW-05I	MW-05I	MW-05S	MW-05S
			4/22/2022	5/03/2019	3/17/2020	7/29/2020	4/22/2022	5/03/2019	3/17/2020	7/29/2020	4/22/2022	5/03/2019	3/17/2020	7/29/2020	4/22/2022	5/08/2019	3/18/2020	7/29/2020	4/20/2022	5/08/2019	3/18/2020	7/29/2020	4/20/2022	5/08/2019	3/18/2020
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																							
Last Updated																									$\overline{}$
Exceedance Key																									
General Parameters																									
Methane	74-82-8	ug/l			290	1100			87	140			360000	17000			14	43 J			4200	52			1300
Nitrogen, ammonia, as N	7664-41-7	ug/l		7400	<u>6500</u>			1400	1100		-	1800	16000	-	-	310	180		-	2400	2000	-		310	220
Total Metals																									
Mercury	7439-97-6	ug/l	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U

			MW-05S	MW-05S	MW-06D	MW-06D	MW-06I	MW	-06I	MW-06S	MW-06S	MW-07D	MW-07D	MW-07I	MW-07I	MW-08D	MW-08D	MW-08D	MW-08D	MW-08I	MW-08I	MW-08I	MW-08I	MW-08S	MW-08S	MW-08S
			7/29/2020	4/21/2022	5/08/2019	4/22/2022	5/08/2019	4/22/	2022	5/09/2019	4/22/2022	5/09/2019	4/20/2022	5/09/2019	4/20/2022	5/09/2019	3/19/2020	7/30/2020	4/21/2022	5/09/2019	3/19/2020	7/30/2020	4/21/2022	5/09/2019	3/19/2020	7/30/2020
			N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																								
Last Updated																										
Exceedance Key																										
General Parameters																										
Methane	74-82-8	ug/l	78														17 J	17			6900	3400			800000	<u>17000</u>
Nitrogen, ammonia, as N	7664-41-7	ug/l			1600		870			3900	_	1000		6000	-	600	180			780	610	_		3400	2500	
Total Metals																										
Mercury	7439-97-6	ug/l		< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U	

																	101/ 100									
			MV	/-08S	MW-09D	MW-09D	MW-09D	MW-09D	MW-091	MW-091	MW-091	MW-091	MW-098	MW-09S	MW-098	MW-09S	MW-10D	MW-10D	MW-10D	MW-10D	MW-101	MW-101	MW-101	MW-101	MW-10S	MW-105
			4/21	/2022	5/10/2019	3/19/2020	7/30/2020	4/21/2022	5/10/2019	3/19/2020	7/30/2020	4/21/2022	5/10/2019	3/19/2020	7/30/2020	4/21/2022	5/17/2019	3/20/2020	7/31/2020	4/25/2022	5/17/2019	3/20/2020	7/30/2020	4/25/2022	5/17/2019	3/20/2020
			N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
			l																							
Parameter	CAS#	Units																								
Last Updated																										
Exceedance Key																										
General Parameters																										
Methane	74-82-8	ug/l			-	1300	100		-	1300	720			< 1.0 U	120		-	51	80			4300	520	-		380000
Nitrogen, ammonia, as N	7664-41-7	ug/l		-	630	750			27	750		-	130	310			1700	1500		-	560	620			30000	20000
Total Metals																										
Mercury	7439-97-6	ug/l	< 0.2 L	< 0.2 U	< 0.20 U	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U

			MW-10S	MW-10S	MW-11D	MW-11I	MW-11S	MW-12D	MW	/-12I	MW-12S	MW-13D	MW-13I	MW-13S	MW-14D	MW-14I	MW-14S	MW-15D	MW-15I	MW-15S	TMV	W-1	TMW-2	TW-01	TW-01	TW-01	TW-01
			7/30/2020	4/25/2022	4/25/2022	4/25/2022	4/25/2022	4/26/2022	4/26	/2022	4/26/2022	4/26/2022	4/26/2022	4/26/2022	4/26/2022	4/25/2022	4/26/2022	4/25/2022	4/25/2022	4/25/2022	6/27/2	2022	6/27/2022	10/10/2018	9/13/2019	12/10/2019	3/16/2020
			N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
Parameter	CAS#	Units																									
Last Updated																											
Exceedance Key																											
General Parameters																											
Methane	74-82-8	ug/l	6400				-																	-			71000
Nitrogen, ammonia, as N	7664-41-7	ug/l	-				-		-				_					-					-		16000	14000	-
Total Metals																											
Mercury	7439-97-6	ug/l	-	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	0.3	< 0.2 U				< 0.20 U		< 0.20 U										

			TW-01	TW	/-01	TW-02	TW-02	TW-02	TW-02	TW-03	TW-03	TW-03	TW-03	TW-03	TW-07	TW-07	TW-08	TW-08	TW-09	TW-10	TWVP-19-MW	TWVP-20-MW	TWVP-21-MW
			7/29/2020	4/25/	/2022	10/10/2018	9/13/2019	12/10/2019	3/16/2020	10/10/2018	12/10/2019	3/16/2020	7/31/2020	4/21/2022	10/11/2018	4/22/2022	10/11/2018	4/25/2022	4/21/2022	4/21/2022	4/12/2019	4/12/2019	4/12/2019
			N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
										·	·												
Parameter	CAS #	Units	l																				
Last Updated																							
Exceedance Key																							
General Parameters																							
Methane	74-82-8	ug/l	<u>18000</u>	-	-				<u>82000</u>	-	-	<u>250000</u>	12000								< 0.20 U	< 0.20 U	< 0.20 U
Nitrogen, ammonia, as N	7664-41-7	ug/l	-				5000	3400	-	-	42000		-			-					-		
Total Metals																							
Mercury	7439-97-6	ug/l		< 0.2 U	< 0.2 U	< 0.20 U		< 0.20 U		< 0.20 U	< 0.20 U			< 0.2 U	0.27	< 0.2 U	< 0.20 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.20 U	< 0.20 U	< 0.20 U

			TWVP-22-MW 4/12/2019 N	TWVP-23-MW 4/12/2019 N
Parameter	CAS#	Units		
Last Updated				
Exceedance Key				
General Parameters				
Methane	74-82-8	ug/l	< 0.20 U	< 0.20 U
Nitrogen, ammonia, as N	7664-41-7	ug/l		-
Total Metals				
Mercury	7439-97-6	ug/l	< 0.20 U	< 0.20 U

Legend

Cleanup criteria shown are from EGLE RRD rules effective December 30, 2013; R 299.46 Generic soil cleanup criteria for residential category (Table 2).

<u>Footnotes</u>

- N Sample Type: Normal
- FD Sample Type: Field Duplicate
- J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quantitation limits.
- J- The result is an estimated quantity and may be biased low.
 J+ The result is an estimated quantity and may be biased
- high.

 U The analyte was analyzed for, but was not detected.

Where applicable a hardness value of 200 mg CaCO3/L was used

Where applicable the X footnote was applied for a protected water source.

										Location	DS-1	DS-2	GLC-BS-1	GLC-BS-2
										Date	3/01/2017	3/01/2017	12/09/2002	12/09/2002
										Depth				
			MDEQ Soil	Statewide			Infinite Source	Particulate Soil		Sample Type	N	N	N	N
			Target	Default	Residential Drinking	Groundwater Surface	Volatile Source	Inhalation		Soil Saturation				
			Detection	Background	Water Protection	Water Interface	Inhalation Criteria	Criteria	Direct Contact	Screening				
Parameter	CAS#	Units	Limits	Levels	Criteria	Protection Criteria	(42%)	(42%)	Criteria	Levels				
Last Updated	CAS#	Offics	03/01/2016	12/30/2013	12/30/2013	06/25/2018	12/30/2013	12/30/2013	12/30/2013	12/30/2013				
Exceedance Kev		-	03/01/2016	12/30/2013	12/30/2013 Bold	Underline	No Exceedance	Shade	Border	No Exceedance				
General Parameters		-			Bold	<u>Onderline</u>	No Exceedance	Snage	Dorder	No Exceedance				
	44000 70 0	١.	#0000				*# N						050000	550000
Sulfate, as SO4	14808-79-8	ug/kg	50000		5000000	NA	NLV	ID	ID	NA		-	950000	550000
Metals	7440.00.0	L	0000	5000	4200	4000	NU 1/	000100	7000					
Arsenic	7440-38-2	ug/kg	2000	5800	4600	4600	NLV	302400	7600	NA NA				
Barium	7440-39-3	ug/kg	1000	75000 B	1300000 B	600000 B,G	NLV	138600000 B	37000000 B	NA NA			-	
Cadmium	7440-43-9	ug/kg	200	1200 B	6000 B	3000 B,G,X	NLV	714000 B	550000 B	NA				
Chromium	7440-47-3	ug/kg	2000	NA	30000 (1)	<u>3300 (1)</u>	NLV	109200 (1)	2500000 (1)	NA				
Chromium, hexavalent	18540-29-9		2000	NA	30000	3300	NLV	109200	2500000	NA	-	-	-	
Copper	7440-50-8	ug/kg	1000	32000 B	5800000 B	93000 B,G	NLV	54600000 B	20000000 B	NA				
Lead	7439-92-1	ug/kg	1000	21000 B	700000 B	2500000 B,G,X	NLV	42000000 B	400000 B	NA				
Manganese	7439-96-5	ug/kg	1000	440000 B	1000 B	26000 B,G,X	NLV	1386000 B	25000000 B	NA				
Mercury	7439-97-6	ug/kg	50	130 B,Z	1700 B,Z	50 B,M,Z	21840 B,Z	8400000 B,Z	160000 B,Z	NA				
Selenium	7782-49-2	ug/kg	200	410 B	4000 B	<u>400 B</u>	NLV	54600000 B	2600000 B	NA			-	
Silver	7440-22-4	ug/kg	100	1000 B	4500 B	<u>100 B,M</u>	NLV	2814000 B	2500000 B	NA		-	-	
Sodium	7440-23-5	ug/kg	10000		4600000	NA	NLV	ID	1000000000 D	NA		-	3700000	4400000
Zinc	7440-66-6	ug/kg	1000	47000 B	2400000 B	210000 B,G	NLV	ID	170000000 B	NA			-	
Semivolatile Organic Compounds														
2-Methylnaphthalene	91-57-6	ug/kg	330		57000	<u>4200</u>	630000	281400000	8100000	NA			-	
4-Chloro-3-methylphenol	59-50-7	ug/kg	280		5800	<u>280</u>	NLV	ID	4500000	NA				
Benzo(a)pyrene	50-32-8	ug/kg	330		NLL	NLL	NLV	630000 Q	2000 Q	NA	-			
Fluoranthene	206-44-0	ug/kg	330		730000	<u>5500</u>	310800000	3906000000	46000000	NA				
Naphthalene	91-20-3	ug/kg	330		35000	<u>730</u>	126000	84000000	16000000	NA				
Phenanthrene	85-01-8	ug/kg	330		56000	<u>2100</u>	67200	2814000	1600000	NA		-		
Volatile Organic Compounds														
1,2,4-Trimethylbenzene	95-63-6	ug/kg	100		2100 I	<u>570 I</u>	8820000 I	34440000000 I	32000000 C,I	110000 I				
2-Methylnaphthalene	91-57-6	ug/kg	330		57000	<u>4200</u>	630000	281400000	8100000	NA			-	
Benzene	71-43-2	ug/kg	50		100 I	<u>240 I,X</u>	5460 I	159600000 I	180000 I	400000 I				
Butylbenzene	104-51-8	ug/kg	50		1600	ID	ID	840000000	2500000	10000000				
Naphthalene	91-20-3	ug/kg	330		35000	<u>730</u>	126000	84000000	16000000	NA			-	
Chlorinated Dioxins / Furans														
Toxicity equivalence factor summation		ug/kg			NLL	NLL	NLV	29.82 O	0.09 O	NA	0.00115	0.00076	-	

			GLC-BS-3	GLC-SW-1	GLC-SW-2	GLC-SW-3	GLC-SW-4	GLC-SW-5	Lime-SB-01	Lime-SB-01	Lime-SB-02	Lime-SB-02	Lime-SB-03	Lime-SB-03	LM-1	LM-2	LM-3	LS-1 SS	LS-2 SS	LSB-1	LSB-2 SS	LSB-3 SS
			12/09/2002	12/09/2002	12/09/2002	12/09/2002	12/09/2002	12/09/2002	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	3/01/2017	3/01/2017	3/01/2017	1/19/2012	1/19/2012	4/03/2014	4/03/2014	4/03/2014
			l N	l N	l N	l N	N	_N	N		N	N	l N	l N	N	N	N	l N	N	l N	l N	l N
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
		1	l																			1
		1	l																			1
Parameter	CAS#	Units	l																			,
Last Updated																						
Exceedance Kev																						
General Parameters																						
Sulfate, as SO4	14808-79-8	ug/kg	180000	8500000	810000	1100000	5500000	68000	_				-		-		-				-	
Metals		ľ																				
Arsenic	7440-38-2	ug/kg		-														ND	ND	330	360	300
Barium	7440-39-3	ug/kg		-														51000	59000	30000	45000	28000
Cadmium	7440-43-9	ug/kg		-				-	-									300	310	320	630	< 200
Chromium	7440-47-3	ug/kg		-				-	-								-				_	
Chromium, hexavalent	18540-29-9	ug/kg		-	-			-												<u>4900</u>	3600	3400
Copper	7440-50-8	ug/kg		-	-			-							-			4900	21000	6300	11000	8400
Lead	7439-92-1	ug/kg		-													-	12000	17000	6200	5300	11000
Manganese	7439-96-5	ug/kg		-				-	-												-	
Mercury	7439-97-6	ug/kg		-				-					-					ND	ND	< 50	< 50	< 50
Selenium	7782-49-2	ug/kg		-	-	-	-	-	-						-	-	-	ND	ND	200	< 200	250
Silver	7440-22-4	ug/kg							-						-		-	ND	ND	< 100	< 100	< 100
Sodium Zinc	7440-23-5 7440-66-6	ug/kg	6500000	7300000	15000000	2400000	2100000	120000										3900000	240000 180000	46000	51000	74000
Semivolatile Organic Compounds	7440-66-6	ug/kg		-	-	-	-	-								-	-	42000	160000	46000	51000	74000
2-Methylnaphthalene	91-57-6	ug/kg	-																			-
4-Chloro-3-methylphenol	59-50-7	ug/kg ug/kg		-	-			-					-									
Benzo(a)pyrene	50-32-8	ug/kg																				-
Fluoranthene	206-44-0	ug/kg				-		_							_					-		
Naphthalene	91-20-3	ug/kg		-	-			_							-						-	
Phenanthrene	85-01-8	ug/kg		-													-				-	
Volatile Organic Compounds																						
1,2,4-Trimethylbenzene	95-63-6	ug/kg		-				-			-						-					
2-Methylnaphthalene	91-57-6	ug/kg		-	-	-	-	-	_		-				-		-				-	
Benzene	71-43-2	ug/kg		-					-												-	
Butylbenzene	104-51-8	ug/kg		-	-				-													
Naphthalene	91-20-3	ug/kg	-	-	-	-	-	-	-						-						-	
Chlorinated Dioxins / Furans		L.			-																	
Toxicity equivalence factor summation	1	ug/kg		-											0.00057	0.00016	0.00025				-	

			LSB-4 SS	RR-1	RR-2	RR-3	SB-22-01	SB-22-01	SB-22-02	SR-22-02	SB-22-03	SR-22-04	SB-22-04	SR-22-05	SR-22-05	SR-22-06	SR-22-06	SB-22-07	SB-22-07	SB-22-08	SB-:	22-08	SB-22-09	SB-22-09
						_																/2022		
			4/03/2014	2/28/2017	2/28/2017	3/01/2017	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/13/2022	6/14/2022	6/14/2022	6/14/2022	6/14.	12022	6/14/2022	6/14/2022
				1.5 - 2.5 ft	0.5 - 1.5 ft	0.5 - 1.5 ft	1 - 2 ft	2 - 3 ft	0 - 1 ft	2 - 3 ft	0 - 1 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft	5 - 6 ft	0 - 1 ft	2 - 3 ft	1.5 - 2.5 ft	2.5 - 3.5 ft	2.5 - 3.5 ft	0 - 1 ft	2 - 3 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	l N	N	l N	FD	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
General Parameters																								
Sulfate, as SO4	14808-79-8	ug/kg	-	-	-	-	-		-			-					-		_	-		-		
Metals					l .		1																	
Arsenic	7440-38-2	ug/kg	1100	3000	4200	24000	6790	7280	3590	1420	2490	1260	1700	920	1380	700	600	4670	4730	4270	4030 J	14000 J	540	220
Barium	7440-39-3	ug/kg	41000	24000	17000	51000	87100	22100	54400	11200	31000	22700	6460	9610	9190	7240	16300	110000	129000	95900	11700 J	29500 J	6890	3470
Cadmium	7440-43-9	ug/kg	460	680	780	800	1280	210	470	< 200 U	430	220	500	< 200 U	< 200 U	280	< 200 U	<u>3610</u>	1300	310	< 200 U	< 200 U	< 200 U	< 200 U
Chromium	7440-47-3	ug/kg	-	<u>5400</u>	5300	<u>4600</u>	<u>9800</u>	<u>7930</u>	<u>10500</u>	20000	40300	10300	23900	<u>3600</u>	<u>15000</u>	3860	<u>12000</u>	<u>16700</u>	21000	<u>18000</u>	4200	6050	8640	< 500 U
Chromium, hexavalent	18540-29-9	ug/kg	< 600	-	-		-		-			-					-		-	-				
Copper	7440-50-8	ug/kg	4800	13000	19000	<u>760000</u>	15800	9700	17600	32200	50500	10200	87900	4730	19900	3150	2670	27300	25500	15600	5800 J	12500 J	2530	< 500 U
Lead	7439-92-1	ug/kg	6700	32000	47000	68000	22000	93300	34900	24900	47000	18900	17300	6020	8840	5380	22200	83000	88600	48900	7980	7820	3360	440
Manganese	7439-96-5	ug/kg	-	26000	110000	21000	-		-			-					-							
Mercury	7439-97-6	ug/kg	< 50	ND	ND	59	54	< 50 U	114	< 50 U	< 50 U	< 50 U	<u>1195</u>	< 50 U	< 50 U	< 50 U	< 50 U	148	130	104	102	<u>191</u>	< 50 U	< 50 U
Selenium	7782-49-2	ug/kg	<u>590</u>	<u>1000</u>	<u>720</u>	<u>1400</u>	<u>510</u>	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	990	< 400 U	< 400 U
Silver	7440-22-4	ug/kg	< 100	ND	ND	220	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 J	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
Sodium	7440-23-5	ug/kg																						
Zinc	7440-66-6	ug/kg	43000	37000	120000	71000	66600	39600	149000	36300	99500	52300	30800	16900	19000	11300	21800	207000	246000	79100	23000	17300	12200	950
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	-	550	950	390	-		-			-					-		-	-				
4-Chloro-3-methylphenol	59-50-7	ug/kg		ND	ND	ND	-		-											-				
Benzo(a)pyrene	50-32-8	ug/kg		ND	ND	ND											-							
Fluoranthene	206-44-0	ug/kg		ND	ND	ND	-		-			-					-		_	-		-		
Naphthalene	91-20-3	ug/kg		470	<u>810</u>	ND			-															
Phenanthrene	85-01-8	ug/kg	-	ND	ND	ND													-	-				
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg		ND	ND	ND	-			-		-					-		-	-		-		
2-Methylnaphthalene	91-57-6	ug/kg		ND	ND	ND				-		-					-		-	-		-		
Benzene	71-43-2	ug/kg		ND	ND	ND			-			-							-					
Butylbenzene	104-51-8	ug/kg		ND	ND	ND													-					
Naphthalene	91-20-3	ug/kg		ND	ND	ND													-	-		-		
Chlorinated Dioxins / Furans																								
Toxicity equivalence factor summation		ug/kg			-				-	_		_										-		

			SB-22-10	SB-22-10	SB-22-11	SB-22-11	SB-22-12	SB-22-12	SB-22-13	SB-22-13	SB-22-14	SB-22-15	SB-2	22-15	SB-22-16	SB-22-16	SB-22-17	SB-22-17	SB-2	22-18	SB-22-18	SB-22-19	SB-22-19	SB-22-20
			6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14	/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14	/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022
			1 - 2 ft	3 - 4 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft	2 - 3 ft	0 - 1 ft	4 - 5 ft	4 - 5 ft	0 - 1 ft	3 - 4 ft	3 - 4 ft	0 - 1 ft	3 - 4 ft	1.5 - 2.5 ft	3.5 - 4.5 ft	0.5 - 1.5 ft	0.5 - 1.5 ft	3.5 - 4.5 ft	1 - 2 ft	4 - 4.8 ft	3 - 4 ft
			l N	N	l _N	l N	N	l N	N	l _N	l N	l _N	l N	FD	l N	l N	l _N	N	N	FD	l N	N	l _N	N
	Г																							
Parameter	CAS#	Units																						-
Last Updated																								ullet
Exceedance Key																								
General Parameters																								
Sulfate, as SO4	14808-79-8	ug/kg	-				-	-		-			-									-	-	
Metals																								
Arsenic	7440-38-2	ug/kg	1180	2410	3630	7320	690	5280	650	2190	2820	2000	24900 J	11700 J	1550	790	710	1110	1010	870	530	800	510	440
Barium	7440-39-3	ug/kg	23200	28200	91600	127000	4010	69600	42500	34800	78300	37800	95200 J	54200 J	64200	12600	8280	44200	21900 J	35100 J	53400	7360	5910	5160
Cadmium	7440-43-9	ug/kg	< 200 U	< 200 U	220	470	< 200 U	200	230	< 200 U	260	< 200 U	< 200 U	< 200 U	540	< 200 U	< 200 U	250	250	400	< 200 U	< 200 U	< 200 U	< 200 U
Chromium	7440-47-3	ug/kg	14300	<u>10700</u>	20100	17800	680	12800	14400	9960	6630	7970	4270 J	9050 J	75500	3220	3090	48500	64300 J	185000 J	4660	3460	2570	1590
Chromium, hexavalent	18540-29-9	ug/kg						-		-		-	-									-	-	
Copper	7440-50-8	ug/kg	7740	26700	21100	86400	1400	10500	4380	21100	16900	6800	20700	28400	5720	4210	3270	8560	6150	5800	4210	2940	4810	940
Lead	7439-92-1	ug/kg	11700	20100	20800	219000	690	15800	12200	36800	26900	20900	10100 J	16400 J	8030	8120	7040	15700	7430	5880	7480	3350	7510	1750
Manganese	7439-96-5	ug/kg					-			-	-		-	-								-	-	
Mercury	7439-97-6	ug/kg	< 50 U	< 50 U	< 50 U	116	< 50 U	< 50 U	< 50 U	205	< 50 U	< 50 U	< 50 U	72	< 50 U	< 50 U	< 50 U	66	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
Selenium	7782-49-2	ug/kg	< 400 U	< 400 U	440	730	1020	2040	< 400 U	< 400 U	< 400 U	< 400 U	2590	2400	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U	< 400 U
Silver	7440-22-4	ug/kg	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
Sodium	7440-23-5	ug/kg			-					-		-										-	-	
Zinc	7440-66-6	ug/kg	36800	52400	54700	146000	2270	35400	58800	44000	259000	38600	26000 J	41700 J	40400	14700	14500	35900	26000	29200	19500	8180	15700	3920
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	-	-	-	-		_		-										-	-	-	-	
4-Chloro-3-methylphenol	59-50-7	ug/kg																					-	
Benzo(a)pyrene	50-32-8	ug/kg			-					_	-	_									-	-	-	
Fluoranthene	206-44-0	ug/kg						-					-				-	_				-	-	
Naphthalene	91-20-3	ug/kg																						
Phenanthrene	85-01-8	ug/kg																						
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg															-			-	-			
2-Methylnaphthalene	91-57-6	ug/kg	-		-		-	-		-	-		-					-			-	-	-	
Benzene	71-43-2	ug/kg			-												-				-		-	
Butylbenzene	104-51-8	ug/kg			-								-				-				-		-	
Naphthalene	91-20-3	ug/kg			-			-									-	_				-	-	
Chlorinated Dioxins / Furans																								
Toxicity equivalence factor summation		ug/kg																						

Part				SB-22-20	SB-:	22-21	SB-22-21	SB-22-22	SR-22-22	SR-22-23	SB-:	22-23	SR-22-24	SR-22-24	SB-22-25	SR-22-25	SB-22-26	SB-22-26	SR-22-27	SR-22-27	SR-22-28	SR-22-28	SB-22-29	SR-22-29	SB-22-30
Parameter Para																									
Parameter									0/15/2022	0/15/2022				0/10/2022	0/15/2022	6/15/2022	0/10/2022		6/13/2022	6/13/2022					
Parameter				4.2 - 5 ft	0.5 - 1.5 ft	0.5 - 1.5 ft	4.2 - 5 ft	2 - 3 ft	4 - 5 ft	0 - 1 ft	3.5 - 4.5 ft	3.5 - 4.5 ft	0 - 1 ft	3 - 4 ft	0 - 1 ft	3.5 - 4.5 ft	0 - 1 ft	2.5 - 3.5 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft	1 - 2 ft	1 - 2 ft	3 - 4 ft	0 - 1 ft
Latt Updated Cancer Canc				N	N	FD	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N
Latt Updated Cancer Canc																									
Latt Updated Cancer Canc																									
Latt Updated Cancer Canc	1 .																								'
Second column		CAS#	Units																						
General Parameters Mortials Mortia																									
Substrict 140.00		 	_								-														
Melels Me		44000 70 0																							
Association		14608-79-8	ug/Kg	-				-	-				-		-	-			-						
Bartum		7440 00 0		4000	0470	000 1	700	7020	4500	000	4700	770	4500	4570	2700	070	2700	000	6460	F2000	2520	5450	400	220	050
Cadmiss																									
Chromium																									
Chromish 1954-02-99 Ug/kg																									
Capper 7440-584 Light State St			0 0																				_		
Lead Hanganese 1743-92.1 log/kg 1740 3200 3200 3510 3200 1900 1900 1900 1900 1900 1900 1900 1																									
Marganese																									
Mercury 743-97-8 1954 250												 													_
Selenium 782-492 196 2400 2	9																								
Silver 9 7440-224																									
Sodium																									
Zinc 7440-66-6																									
Semivolatile Organic Compounds 91-57-6 ug/kg																									
2-Methylnaphthalene 91-57-6		7440-00-0	ugrky	14000	020003	149003	17000	24300	00900	7170	310003	210003	47200	02000	101000	0730	100000	3040	447000	103000	100000	110000	4190	3210	23300
4-Chloro-3-methylphenol 59-50-7		01.57.6	ualka																				-		
Benzo (a) pyrene 50-32-8 by 1/2 by 1/	, .																								
Floranthene 206-44-0 4g/kg - 91-20-3 4g/kg - 9																									
Naphthalene 91-20-3 ug/kg																									
Phenathrene 85-01-8 lg/kg 97-06 9																			_						
Volatile Organic Compounds Secondary S					_														-						
1.24-Trimethylbenzene 95-63-6 lg/kg			-99																						
2-Methylnaphthalene 91-57-6 Ug/kg Ug		95-63-6	ua/ka																-		-		<u> </u>		
Benzerie 71-43-2 Ug/kg																			_						
Bulylberzene 104-51-8 Ug/kg	, .					_			-										-						-
Naphthalene 91-20 y y y y y y y y y y y y y y y y y y y	Butylbenzene								_										-		-				
Chlorinated Dioxins / Furans	- /			-			-	-	_						-				-		-				
	Chlorinated Dioxins / Furans		J3																						
	Toxicity equivalence factor summation		ug/kg						-										-						-

			SB-22-30	SB-22-31	SB-2	22-31	SB-22-32	SB-2	22-32	SS-1	SS-1	SS-2	SS-2	SS-3	SS-3	SS-4	SS-4	SS-5	SS-5	SS-6	SS-6	SS-7	SS-7	SS-8
				6/14/2022		/2022	6/14/2022		/2022	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017	2/28/2017		2/28/2017	2/28/2017
			1 - 2 ft	1 - 2 ft	4 - 5 ft	4 - 5 ft	0 - 1 ft	3.5 - 4.5 ft	3.5 - 4.5 ft	0 - 1 ft	3 - 4 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1.5 - 2.5 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0-1ft
			N	N	N	FD	N	N	FD	N	N N	N	N N	N	N	N	N	N	N	N	N	N	N	N
		l																						'
Parameter	CAS#	Units																						
Last Updated																								<u> </u>
Exceedance Key																								
General Parameters																								
Sulfate, as SO4	14808-79-8	ug/kg		-							-		-						-					-
Metals														l										
Arsenic	7440-38-2	ug/kg	3150	2530	7090 J	12200 J	1000	1230	1040		3300		2500		11000		9000		2400		1100		550	
Barium	7440-39-3	ug/kg	37200	38500	66300 J+	142000 J	13800	32600	24700		20000		38000		24000		14000		19000		14000		3900	
Cadmium	7440-43-9	ug/kg	630	520	400	770	< 200 U	340	< 200 U		470		580		680		ND		420		570		ND	
Chromium	7440-47-3	ug/kg	<u>20300</u>	9900	88900 J+	74900	<u>5410</u>	<u>6760</u>	<u>6900</u>		6000		70000		<u>19000</u>		<u>6500</u>		<u>3400</u>		<u>4700</u>		ND	
Chromium, hexavalent	18540-29-9	ug/kg									-				-		-							-
Copper	7440-50-8	ug/kg	11500	16000	31600 J	45000	5120	7820	6550		10000		10000		10000		5100		22000		6300		ND	
Lead	7439-92-1	ug/kg	12600	32400	30600 J	148000 J	10000	5410	4560		12000		14000		20000		38000		14000		5500		ND	
Manganese	7439-96-5	ug/kg					-				98000		170000		40000		2000		67000		49000		16000	-
Mercury	7439-97-6	ug/kg	< 50 U	< 50 U	74	108	< 50 U	< 50 U	< 50 U		ND		ND		ND		ND		ND		ND		ND	
Selenium	7782-49-2	ug/kg	< 400 U	<400 U	840	1830	< 400 U	< 400 U	< 400 U		1000		1000	-	<u>1500</u>		2200		<u>760</u>		440		230	-
Silver	7440-22-4	ug/kg	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U		ND		ND		ND		ND		ND		ND		ND	-
Sodium	7440-23-5	ug/kg		-							-		-											
Zinc	7440-66-6	ug/kg	104000	125000	52100 J+	84200 J	29800	27200 J	14100 J		23000		39000		30000		9800		31000		30000		2000	-
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg			-	-					ND		ND		ND		410	-	ND		ND		ND	-
4-Chloro-3-methylphenol	59-50-7	ug/kg		-			-				ND		ND	-	ND		ND		ND		ND		ND	
Benzo(a)pyrene	50-32-8	ug/kg		-			-		-		ND		ND	-	ND		ND		ND		ND		ND	-
Fluoranthene	206-44-0	ug/kg		-							ND		ND		ND	-	ND		ND		ND		ND	-
Naphthalene	91-20-3	ug/kg									ND		ND		ND		ND		ND		ND		ND	-
Phenanthrene	85-01-8	ug/kg									ND		ND		330		610		ND		ND		ND	-
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg									ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	91-57-6	ug/kg		-	-	-				-	ND	-	ND		ND	-	ND		ND		ND		ND	-
Benzene	71-43-2	ug/kg								-	ND	-	ND		ND	-	ND		ND		ND		ND	-
Butylbenzene	104-51-8	ug/kg			-						ND		ND		ND	-	ND		ND	-	ND		ND	-
Naphthalene	91-20-3	ug/kg		-							ND		ND		ND		ND		ND		ND		ND	-
Chlorinated Dioxins / Furans																								
Toxicity equivalence factor summation		ug/kg								0.00021	-	0.00097		0.00198		0.00016		0.00019		0.04493		0.00031		0.00169

Large Table 3
Summary of Analytical Results for Soil Samples
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

			SS-8	SS-9	SS-9	SS-10	SS-10	SS-11	SS-11	SS-12	SS-12	SS-13	SS-13	SS-14	SS-14	SS-15	SS-15	SS-16	SS-16	SS-17	SS-17	SS-18	SS-18	SS-19
			2/28/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017	3/01/2017
			1 - 2 ft		0 - 1 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0-1ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1 - 2 ft	0 - 1 ft	1-2ft	0 - 1 ft	1 - 2 ft	0 - 1 ft
							1-21	0-110			1-211		1-211		1-21						1-211	0-1 IL		
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																						
Last Updated	CAS #	Onits		1																				
Exceedance Kev																								
General Parameters		Н																						
Sulfate, as SO4	14808-79-8	ug/kg																		-				
Metals	14000-79-0	ug/kg		_			_					_	-		-	-						_		
Arsenic	7440-38-2	ug/kg	1100	1100			2400		3000		1700		1700		8900		4300		1500	-	52000		2800	
Barium	7440-30-2	ug/kg ug/kg	8300	13000			73000		14000		680		15000		81000		21000		10000	-	75000	-	16000	
Cadmium	7440-43-9	ug/kg	210	230			310		280		ND		480		2400		540		250		2100		420	
Chromium	7440-47-3	ug/kg	2600	39000			3900		6000		2100		3700		51000		17000		6100		45000		4900	
Chromium, hexavalent	18540-29-9	ug/kg	2000				<u> </u>				2100		3700		<u> </u>				0100					
Copper	7440-50-8	ug/kg	2100	3100			4400		4000		1600		7200		120000		18000		5200		26000		8400	
Lead	7439-92-1	ug/kg	3600	5500			5300		6400		2400		10000		88000		22000		6700		46000		15000	
Manganese	7439-96-5	ug/kg	40000	53000			40000		30000		14000		100000		210000		71000		38000		180000		92000	
Mercury	7439-97-6	ug/kg	ND	ND	-		ND		ND		ND		ND		1100		ND		ND	-	84	-	ND	-
Selenium	7782-49-2	ug/kg	310	530			1100		660		460	-	560		2300		880		560	-	3800	-	ND	-
Silver	7440-22-4	ug/kg	ND	ND			ND		ND		ND		ND		610		ND		ND		ND		ND	
Sodium	7440-23-5	ug/kg					-		-		-										_	_		
Zinc	7440-66-6	ug/kg	12000	13000			12000		27000		7200		42000		250000		47000		13000	-	59000	-	30000	
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND			2100		890		ND	-	ND		ND		ND		ND		ND	-	ND	
4-Chloro-3-methylphenol	59-50-7	ug/kg	ND	ND			ND		ND		ND	-	ND											
Benzo(a)pyrene	50-32-8	ug/kg	ND	ND			ND		ND	-	ND	-	930		ND		ND		ND	-	ND		ND	-
Fluoranthene	206-44-0	ug/kg	ND	ND			ND		ND		ND	-	2700		ND		ND	-	ND	-	ND		ND	-
Naphthalene	91-20-3	ug/kg	ND	ND			1400		ND															
Phenanthrene	85-01-8	ug/kg	ND	ND			410		430		ND		1600		ND									
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	ND			220		ND		ND	-	ND		170									
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND		-	ND		ND	-	ND	-	ND		ND	-	ND		ND	-	ND	-	ND	-
Benzene	71-43-2	ug/kg	ND	ND			290		ND															
Butylbenzene	104-51-8	ug/kg	ND	ND			ND		ND	-	ND	-	ND		ND		ND		ND	-	ND	-	ND	-
Naphthalene	91-20-3	ug/kg	ND	ND			ND		560		ND	-	ND		ND									
Chlorinated Dioxins / Furans																								
Toxicity equivalence factor summation		ug/kg			0.0007	0.00115		0.00329	-	0.00033		0.00705		0.2014		0.01163		0.00895		0.1051		0.00382		0.00459

			SS-19	SS-20	SS-20	SSB-2/UT-2	T-8	TB-3	TB-4	TB-5	TB-6	TB-9	TB-10	TB-13	TB-15	TB-18	TP-1	TP-1	TP-1	TP-2	TP-2	TP-3	TP-4	TP-4
							_														_	_		
			3/01/2017	3/01/2017	3/01/2017	11/18/2011	7/26/2017	7/25/2017	7/24/2017	7/25/2017	7/25/2017	7/26/2017	7/26/2017	7/27/2017	7/28/2017	7/28/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017
			1 - 2 ft	0 - 1 ft	1 - 2 ft	1.5 - 2.5 ft		5 ft	5 ft	5 ft	2 ft	5 ft	7 ft	5 ft	5 ft	5 ft	2 - 4 ft	6 ft	9 - 9.5 ft	2 ft	12 ft	6 ft	2 ft	6 ft
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	l N	N	N	N
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
General Parameters																								
Sulfate, as SO4	14808-79-8	ug/kg	-		-			-			-		-										-	
Metals																								
Arsenic	7440-38-2	ug/kg	2300		4400	3200	1300	560	3100	1200	4300	4500	1900	1900	4900	2500		3400	11000	1200	960	840	1100	600
Barium	7440-39-3	ug/kg	56000		23000	40000	9500	8600	33000	25000	12000	11000	12000	17000	55000	28000		17000	15000	7700	12000	6600	18000	120000
Cadmium	7440-43-9	ug/kg	880		430	1000	200	320	960	290	480	250	340	560	560	690		870	1900	200	260	ND	300	ND
Chromium	7440-47-3	ug/kg	120000		4000		3300	<u>9900</u>	<u>16000</u>	2500	<u>9500</u>	2900	<u>5100</u>	<u>7400</u>	<u>12000</u>	6000	-	<u>19000</u>	37000	<u>4100</u>	<u>35000</u>	2600	<u>150000</u>	2600
Chromium, hexavalent	18540-29-9	ug/kg	-		-						-		-										-	
Copper	7440-50-8	ug/kg	13000		<u>170000</u>	40000	30000	4200	78000	5800	76000	5200	4700	8500	29000	19000		<u>160000</u>	610000	3000	6800	3600	4700	2400
Lead	7439-92-1	ug/kg	17000		60000	55000	11000	11000	32000	13000	6500	800	8700	5900	55000	160000	-	300000	1400000	7500	18000	6500	9100	7000
Manganese	7439-96-5	ug/kg	230000		58000		36000	76000	140000	110000	62000	36000	51000	77000	91000	99000		60000	110000	61000	58000	32000	130000	25000
Mercury	7439-97-6	ug/kg	85		<u>280</u>	120	390	ND	<u>520</u>	ND	ND	68	61	ND	71	<u>440</u>		ND	ND	ND	340	ND	ND	ND
Selenium	7782-49-2	ug/kg	<u>980</u>		<u>530</u>	<u>450</u>	ND	ND	ND	230	ND	ND	ND	ND	<u>490</u>	240		<u>550</u>	200	300	220	ND	<u>960</u>	ND
Silver	7440-22-4	ug/kg	ND		ND	120	ND	ND	ND	ND	580	ND	ND	ND	ND	ND		ND	290	ND	ND	ND	ND	ND
Sodium	7440-23-5	ug/kg	-		-								-											
Zinc	7440-66-6	ug/kg	61000		55000	100000	12000	21000	89000	57000	15000	13000	22000	27000	69000	87000	-	120000	<u>250000</u>	8700	23000	10000	23000	9500
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	59-50-7	ug/kg	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	50-32-8	ug/kg	ND		ND	ND	ND	ND	460	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	870
Fluoranthene	206-44-0	ug/kg	ND		ND	ND	ND	ND	1400	ND	ND	ND	ND	ND	740	ND	-	ND	ND	ND	ND	ND	ND	2800
Naphthalene	91-20-3	ug/kg	ND		ND	ND																		
Phenanthrene	85-01-8	ug/kg	ND		ND	ND	ND	ND	1100	ND	ND	ND	ND	ND	730	ND	-	ND	ND	ND	ND	ND	ND	2800
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	91-57-6	ug/kg	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	600
Benzene	71-43-2	ug/kg	ND	-	ND			-																
Butylbenzene	104-51-8	ug/kg	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	91-20-3	ug/kg	ND	-	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3600
Chlorinated Dioxins / Furans		L		L																				
Toxicity equivalence factor summation		ug/kg	-	0.0209	-			-			-		-		-		-		-					

Large Table 3 Summary of Analytical Results for Soil Samples (Exceedances Only) 2400 Lakeshore Drive Muskegon County, Michigan

			TP-5	TP-6	TP-6	TP-7	TP-7	TP-8	TP-8	TP-8	TP-9	TP-10	TP-11	TD 44	TP-12	TP-12	TP-13	TP-13	TP-14	TD 45	TP-16	TP-16	TP-17	TP-17
								_	-	_				TP-11						TP-15				
			1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/09/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/10/2017	1/23/2017	1/11/2017	1/11/2017
			8 ft	2 ft	12 ft	2 ft	6.5 ft	2 ft	4 ft	12 ft	4 ft	3.5 ft	2.5 ft	8 ft	3.5 ft	7 ft	2.5 ft	8 ft	10 ft	2.5 ft	1 ft	8 ft	2.5 ft	7 ft
			N	l _N	l N	N	N I	N	l N	l N	N	l N	N	l N	l N	N	l N	N	N	N	l N	l N	N	l N
				.,							.,							.,						
Parameter	CAS#	Units																						
Last Updated																								
Exceedance Key																								
General Parameters																								
Sulfate, as SO4	14808-79-8	ug/kg			-	-	-		-			-					-		-		-	-		-
Metals		L																						
Arsenic	7440-38-2	ug/kg	830	710	810	1400	1600	6700	5500	870	980	620	870	790	950	3200	1400	1000	2200	2200	880	53000	100000	1400
Barium	7440-39-3	ug/kg	22000	17000	9600	28000	26000	13000	88000	15000	29000	6300	16000	16000	4300	65000	30000	4300	850000	20000	21000	35000	65000	6500
Cadmium	7440-43-9	ug/kg	310	270	ND	400	1300	1100	1200	270	460	ND	330	ND		720	280	ND	810	1200	230	1900	2300	ND
Chromium	7440-47-3	ug/kg	18000	160000	15000	43000	11000	3900	8000	4100	160000	ND	190000	4900	ND	71000	89000	60000	48000	14000	7900	11000	18000	ND
Chromium, hexavalent	18540-29-9	ug/kg																						
Copper	7440-50-8	ug/kg	4700	4600	4300	12000	42000	6000	25000	6900	6000	1500	3900	7300	2000	14000	6100	2300	20000	73000	3300	23000	28000	ND
Lead	7439-92-1	ug/kg	6000	4500	7800	16000	30000	2800	24000	9600	9000	2100	4300	4600	2000	5400	6000	1500	50000	11000	11000	44000	120000	ND
Manganese	7439-96-5	ug/kg	73000	130000	35000	110000	120000	14000	210000	46000	200000	20000	160000	140000	61000	160000	180000	190000	900000	140000	47000	79000	100000	45000
Mercury	7439-97-6	ug/kg	ND	ND		ND	77	ND	91	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	800	220	ND
Selenium	7782-49-2	ug/kg	ND	720	-	840	440	370	570	ND	1000	250	1100	450	950	1600	1100	1800	2100	450	370	8600	9300	210
Silver	7440-22-4	ug/kg	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	160	200	240	ND	ND	ND	160	ND
Sodium	7440-23-5	ug/kg																	-			-		
Zinc	7440-66-6	ug/kg	22000	18000	10000	36000	<u>1600000</u>	8400	90000	20000	34000	5300	27000	12000	6400	41000	22000	12000	180000	190000	14000	74000	89000	2900
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	59-50-7	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	50-32-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	206-44-0	ug/kg	ND	ND	860	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	91-20-3	ug/kg																			-			
Phenanthrene	85-01-8	ug/kg	ND	ND	510	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140	ND	ND	ND
2-Methylnaphthalene	91-57-6	ug/kg	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1500	ND	ND	ND	ND
Benzene	71-43-2	ug/kg					-		-										-			-		
Butylbenzene	104-51-8	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	91-20-3	ug/kg	<u>1400</u>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	360	ND	ND	ND	ND
Chlorinated Dioxins / Furans	ļ																							
Toxicity equivalence factor summation	<u> </u>	ug/kg	0.00144				0.0156															0.0245		

Large Table 3
Summary of Analytical Results for Soil Samples
(Exceedances Only)
2400 Lakeshore Drive
Muskegon County, Michigan

									1	1							1							
			TP-18	TP-18	TP-18	TP-18	TP-19	TP-19	TP-19	TP-20	TP-20	TP-20	TP-21	TP-21	TP-22	TP-22	TP-23	TP-23	TP-24	TP-24	TP-25	TP-25	TP-26	TP-26
			1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/11/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017
			5 ft	7 ft	9.5 ft	11 ft	2 ft	5.5 ft	12 ft	2.5 ft	9 ft	15 ft	2.5 ft	13 ft	2 ft	6.5 ft	3 ft	5.5 ft	2 ft	15 ft	2 ft	13 ft	2 ft	16 ft
				'."	3.5 11			0.0 10							- "	0.0 10		0.010				""		
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																								'
																								'
Parameter	CAS#	Units																						
Last Updated	CAS#	Offics																						-
Exceedance Key																								
General Parameters																								-
Sulfate, as SO4	14808-79-8	ug/kg																						
Metals	14000-75-0	ug/kg			_						-					-								
Arsenic	7440-38-2	ug/kg	1100	1100	1100	790	2900	13000	5200	1500	1700	3300	2400	4700	7800		33000	4300	4000	100000	4.6	3.4	5.6	1.1
Barium	7440-30-2	ug/kg	7800	5900	57000	20000	50000	26000	51000	300000	46000	230000	36000	30000	150000		53000	73000	61000	44000	70	42	53	8
Cadmium	7440-43-9	ug/kg	ND	330	980	350	520	630	1200	8400	620	4500		690	6800		1900	1800	930	1800	1.8	0.85		0.24
Chromium	7440-47-3	ug/kg	8200	6900	82000	44000	15000	6100	310000	28000	8400	22000	6200	100000	110000		38000	160000	43000	14000	250	160	260	4.8
Chromium, hexavalent	18540-29-9	ug/kg											0200											
Copper	7440-50-8	ug/kg	3600	6200	25000	8600	6200	7400	48000	62000	13000	54000	12000	8600	480000		33000	50000	20000	21000	60	33	68	4.5
Lead	7439-92-1	ug/kg	6200	2400	10000	8000	20000	28000	14000	31000	21000	12000	17000	17000	750000		39000	17000	20000	46000	26	25	22	3.1
Manganese	7439-96-5	ug/kg	29000	44000	290000	100000	120000	120000	230000	1700000	130000	2000000		180000	440000		140000	500000	200000	71000	480	160	300	67
Mercury	7439-97-6	ug/kg	ND	ND	ND	77	ND	59	200	ND	ND	ND	ND	ND	1000		ND	81	ND	ND	0.092	0.14	0.13	ND
Selenium	7782-49-2	ug/kg	ND	ND	ND	ND	ND	630	ND	ND	280	1900	-	1500	1600		2500	1100	1300	4300	0.91	0.9		0.59
Silver	7440-22-4	ug/kg	ND	ND	ND	ND	ND	ND	140	390	ND	320	ND	ND	1700		ND	210	ND	ND	0.17	0.11	0.2	ND
Sodium	7440-23-5	ug/kg										-												-
Zinc	7440-66-6	ug/kg	9800	9500	78000	46000	27000	29000	190000	500000	45000	350000	36000	31000	760000		82000	240000	120000	60000	240	110	210	9.9
Semivolatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	ug/kg	ND	6900	2300	ND	ND	ND	ND	ND	940	ND	ND	ND	ND		ND							
4-Chloro-3-methylphenol	59-50-7	ug/kg	ND	ND	ND	ND	ND	ND	290	ND	ND	ND	ND	ND	ND		ND							
Benzo(a)pyrene	50-32-8	ug/kg	ND	350	350	ND	ND	ND	ND	ND	ND	ND	ND	ND	6100		ND							
Fluoranthene	206-44-0	ug/kg	ND	ND	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	10000		ND							
Naphthalene	91-20-3	ug/kg																						
Phenanthrene	85-01-8	ug/kg	ND	4300	2100	ND	ND	ND	ND	ND	990	ND	ND	ND	<u>27000</u>		ND							
Volatile Organic Compounds																								
1,2,4-Trimethylbenzene	95-63-6	ug/kg	ND	ND	ND	ND	ND	ND	<u>690</u>	ND	<u>850</u>	ND	ND	ND	ND		ND							
2-Methylnaphthalene	91-57-6	ug/kg	ND	ND	1200	ND	ND	ND	2100	ND	4600	ND	ND	ND	ND		ND	ND	ND	ND	ND	580	ND	ND
Benzene	71-43-2	ug/kg		-	-																-			-
Butylbenzene	104-51-8	ug/kg	ND	ND	160	ND	ND	ND	ND		ND													
Naphthalene	91-20-3	ug/kg	ND	ND	830	ND	ND	ND	ND		ND													
Chlorinated Dioxins / Furans																								
Toxicity equivalence factor summation		ug/kg	0.00963		0.00626				0.1387			0.00099		0.00433		82.722		0.0886						

Large Table 3 Summary of Analytical Results for Soil Samples (Exceedances Only) 2400 Lakeshore Drive Muskegon County, Michigan

			TP-27	TP-28	TP-28	TD 20	TD 20	TP-30	TP-30	TP-31	TP-31 Sidewall	TP-32	TP-32	TP-32	TP-33	TP-33	TD 24	TP-34	THIND 40 F CC	TWVP-19-W-SS	TANKE OF CO.
						TP-29	TP-29										TP-34				
			1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	1/12/2017	4/10/2019	4/10/2019	4/10/2019
			11 ft	2 ft	7 ft	2 ft	10 ft	2 ft	8 ft	10 ft		2.5 ft	9 ft	15 ft	2 ft	11 ft	3 ft	9 ft	0.5 ft	0.5 ft	0.5 ft
			N	l N	N	N	l N	l N	l N	N	N	N	l N	l N	N	l _N	l N	N N	l N	N	N
	1			,	.,	.,	.,	.,				N .		.,		.,,	.,,	.,,			.,
Parameter	CAS#	Units																			
Last Updated																					
Exceedance Key																					
General Parameters																					
Sulfate, as SO4	14808-79-8	ug/kg		_	-			-				-	-							-	-
Metals																					
Arsenic	7440-38-2	ug/kg	5.3	2.9	21	4.4	0.92	5.9	77	2.5	10	48	26	0.82	38	7.6	1.8	26	4700	3700 J	7400
Barium	7440-39-3	ug/kg	41	28	37	31	1.6	37	38	14	39	47	35	2.4	80	23	4	27	86000	120000 J	61000
Cadmium	7440-43-9	ug/kg	2.2	0.56	1.2	0.8	ND	1.5	2.2		0.84	1.2	1.1	ND	1.5	0.61	0.43	1.9	1000	950	1800
Chromium	7440-47-3	ug/kg	420	16	13	13	ND	9.6	25	11	17	16	14	ND	11	5.4	14	12	20000	54000 J	27000
Chromium, hexavalent	18540-29-9	ug/kg		-	-			-					-								-
Copper	7440-50-8	ug/kg	57	15	16	16	ND	11	21	3.2	15	28	15	ND	17	5.7	31	23	22000	23000	33000
Lead	7439-92-1	ug/kg	25	21	34	26	ND	21	56	3.5	24	42	30	ND	35	16	7.6	27	35000	25000	54000
Manganese	7439-96-5	ug/kg	300	76	86	95	7.8	170	64	67	150	130	87	10	430	52	57	31		-	-
Mercury	7439-97-6	ug/kg	0.14	0.053	0.062	0.076	ND	0.052	ND	ND	0.075	0.17	0.11	ND	ND	ND	ND	ND	56	67	80
Selenium	7782-49-2	ug/kg	0.89	0.89	1.6	1.1	0.31	0.86	4.5		1.2	1.9	2.1	0.44	2.9	1	0.36	1.7	<u>1200</u>	1300 J	<u>1200</u>
Silver	7440-22-4	ug/kg	0.23	ND	ND	ND	ND	ND	0.12	ND	ND	0.11	ND	ND	ND	ND	ND	ND	< 110.0 U	< 100.0 U	< 100.0 U
Sodium	7440-23-5	ug/kg		-				-													-
Zinc	7440-66-6	ug/kg	290	43	91	72	1.5	62	62	15	51	62	79	1.9	66	20	8.8	370	110000	110000	180000
Semivolatile Organic Compounds																					
2-Methylnaphthalene	91-57-6	ug/kg	750	ND	ND	ND	ND	ND	ND	ND	ND	< 590.0 U	< 330.0 U	< 1100.0 U							
4-Chloro-3-methylphenol	59-50-7	ug/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 590.0 U	< 290.0 U	< 1100.0 U
Benzo(a)pyrene	50-32-8	ug/kg	ND	ND	ND	ND	ND	870	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	420	< 330.0 U	920
Fluoranthene	206-44-0	ug/kg	ND	340	ND	ND	ND	ND	ND	ND	ND	ND	1000	< 330.0 U	1000						
Naphthalene	91-20-3	ug/kg		-				-					-						< 590.0 U	< 330.0 U	< 1100.0 U
Phenanthrene	85-01-8	ug/kg	ND	ND	ND	ND	ND	440	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	590	< 330.0 U	< 420.0 U
Volatile Organic Compounds																					
1,2,4-Trimethylbenzene	95-63-6	ug/kg	<u>3700</u>	ND	ND	ND	ND	ND	ND	ND	ND		-								
2-Methylnaphthalene	91-57-6	ug/kg	<u>10000</u>	ND	ND	ND	ND	ND	ND	ND	ND			-							
Benzene	71-43-2	ug/kg		-				-					-							-	
Butylbenzene	104-51-8	ug/kg	2400	ND	ND	ND	ND	ND	ND	ND	ND		-	-							
Naphthalene	91-20-3	ug/kg	<u>2800</u>	ND	ND	ND	ND	ND	ND	ND	ND		-	-							
Chlorinated Dioxins / Furans																					
Toxicity equivalence factor summation		ug/kg		-	-			-												-	

			TWVP-20-W-SS	TWVP-21-E-SS	TWVP-21-W-SS	TWVP-22-E-SS	TWVP-22-W-SS	TWVP-23-E-SS	TWVP-23-W-SS
			4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019	4/10/2019
			0.5 ft						
			N	N	N	l N	N	N	N
							.,		
Parameter	CAS#	Units							
Last Updated									
Exceedance Key									
General Parameters									
Sulfate, as SO4	14808-79-8	ug/kg					_		
Metals									
Arsenic	7440-38-2	ug/kg	3800	4200	3900	1000	1000	7600	1000
Barium	7440-39-3	ug/kg	56000	62000	79000	8900	6900	54000	10000
Cadmium	7440-43-9	ua/ka	1200	1000	830	230	210	1100	250
Chromium	7440-47-3	ug/kg	25000	15000	120000	8700	6600	26000	6700
Chromium, hexavalent	18540-29-9	ug/kg							
Copper	7440-50-8	ug/kg	25000	17000	39000	4500	2600	26000	6000
Lead	7439-92-1	ug/kg	26000	58000	44000	6600	6900	60000	6600
Manganese	7439-96-5	ug/kg					-		
Mercury	7439-97-6	ug/kg	55	120	130	< 50.0 U	< 50.0 U	110	< 50.0 U
Selenium	7782-49-2	ug/kg	970	700	600	340	290	1000	240
Silver	7440-22-4	ug/kg	< 100.0 U						
Sodium	7440-23-5	ug/kg					-		
Zinc	7440-66-6	ug/kg	210000	100000	110000	24000	12000	130000	51000
Semivolatile Organic Compounds									
2-Methylnaphthalene	91-57-6	ug/kg	< 1100.0 U	< 450.0 U	< 450.0 U	< 330.0 U	< 430.0 U	< 540.0 U	< 330.0 U
4-Chloro-3-methylphenol	59-50-7	ug/kg	< 1100.0 U	< 450.0 U	< 450.0 U	< 280.0 U	< 430.0 U	< 540.0 U	< 280.0 U
Benzo(a)pyrene	50-32-8	ug/kg	1500	500	370	< 330.0 U	< 330.0 U	1000	< 330.0 U
Fluoranthene	206-44-0	ug/kg	1800	930	900	400	< 330.0 U	2000	< 330.0 U
Naphthalene	91-20-3	ug/kg	< 1100.0 U	< 450.0 U	< 450.0 U	< 330.0 U	< 430.0 U	< 540.0 U	< 330.0 U
Phenanthrene	85-01-8	ug/kg	< 450.0 U	480	520	< 330.0 U	< 330.0 U	720	< 330.0 U
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	95-63-6	ug/kg					-		
2-Methylnaphthalene	91-57-6	ug/kg					-		
Benzene	71-43-2	ug/kg							
Butylbenzene	104-51-8	ug/kg							
Naphthalene	91-20-3	ug/kg					-		
Chlorinated Dioxins / Furans									
Toxicity equivalence factor summation		ug/kg		-			-		

						Location	MW-01I	MW-011	MW-01I	MW-011	MW-01I	MW-01S	MW-01S	MW-01S	MW-01S
						Date	5/02/2019	9/13/2019	12/09/2019	3/17/2020	4/21/2022	5/02/2019	9/13/2019	12/09/2019	3/17/2020
						Sample Type	N	N	N	N	N	N	N	N	N
			MDEQ Water												
			Target	Residential	Groundwater	Flammability									
			Detection	Drinking Water	Surface Water	and Explosivity									
Parameter	CAS#	Units	Limits	Criteria	Interface Criteria	Screening Level									
Last Updated			03/01/2016	12/21/2020	10/12/2023	12/21/2020									
Exceedance Key				Bold	Underline	Shade									
General Parameters															
Chloride	16887-00-6	ug/l	10000	250000 E	125000 FF	ID	190000	190000	190000	-		11000	19000	20000	
Methane	74-82-8	ug/l	500	ID	NA	28000 AA		-	_	44000		-			350000
ve Nitrogen, ammonia, as N	7664-41-7	ug/l	25	10000 N	CC	ID	5900	5000	5200	-		18000	13000	11000	
Solids, total dissolved		ug/l	10000	500000 E	500000 EE	NA	320000	670000	820000	-		740000	920000	1200000	
Sulfate, as SO4	14808-79-8	ug/l	1000	250000 E	NA	ID	10000	< 3000 U	< 3000 U	< 3000 U		1700	< 3000 U	18000	< 3000 UJ
Field Parameters															
a: pH		pH units		6.5 - 8.5 E	<u>6.5 - 9.0</u>	NA			-	-	7.16	-			
Total Metals															
Arsenic	7440-38-2	ug/l	5	10 A	<u>10</u>	ID	< 5.0 U	11	12	-	15	< 5.0 U	< 5.0 U	< 5.0 U	-
Chromium	7440-47-3	ug/l	10	100 A(1)	11 (1)	ID	< 10.0 U		< 10.0 U		< 5 U	< 10.0 U		< 10.0 U	
Chromium, trivalent	16065-83-1	ug/l	10	100 A,H	120 B,G,H,X	ID	< 10.0 U		_	-		< 10.0 U			
Copper	7440-50-8	ug/l	4	1000 E	16 G	ID	< 4.0 U		< 4.0 U	-	< 5 U	< 4.0 U		< 4.0 U	
Iron	7439-89-6	ug/l	200	300 E	NA	ID	270	3900	4500	-		9200	16000	30000	
Lead	7439-92-1	ug/l	3	4.0 L	14 G,X	ID	< 3.0 U		< 3.0 U		< 3 U	< 3.0 UJ		< 3.0 U	
Magnesium	7439-95-4	ug/l	1000	400000	NA	ID	30000	29000	34000			27000	15000	19000	
Manganese	7439-96-5	ug/l	50	50 E	1300 G,X	ID	380	87	51			2900	1800	<u>2900</u>	
Mercury	7439-97-6	ug/l	0.001	2.0 A,Z	<u>0.200 Z</u>	ID	< 0.20 U		< 0.20 U		< 0.2 U	< 0.20 U		< 0.20 U	
Selenium	7782-49-2	ug/l	5	50 A	<u>5.0</u>	ID	< 5.0 U		< 5.0 U		< 5 U	< 5.0 U		< 5.0 U	
Sodium	7440-23-5	ug/l	1000	230000 HH	NA	ID			96000					25000	
Vanadium	7440-62-2	ug/l	4	4.5	<u>27</u>	ID	< 4.0 U		-	-		< 4.0 U			
Per- and Polyfluoroalkyl Substances															
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l		0.051 A	0.059 X	NA	< 0.00200 U		< 0.00863 U	-		< 0.00200 U		< 0.00933 U	
Perfluorononanoic acid (PFNA)	375-95-1	ug/l		0.006 A	0.019 X	NA	< 0.01000 U		< 0.00863 U			< 0.01000 U		< 0.00933 U	
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l		0.016 A,DD	<u>0.011 X</u>	NA	< 0.00200 U		< 0.00863 U		< 0.0021 U	< 0.00200 U		< 0.00933 U	
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l		0.008 A,DD	0.066 X	NA	< 0.00200 U		< 0.00863 U		< 0.0021 U	< 0.00200 U		< 0.00933 U	

Legend

Cleanup criteria shown are from EGLE RRD rules effective December 30, 2013; R 299.44 Generic groundwater cleanup criteria (Table 1). The criteria related to the GSI and PFAS have been updated as recently as October 12, 2023 consistent with

Data were compared to but did not exceed the following criteria:
- Water Solubility

<u>Footnotes</u>

N Sample Type: Normal

FD Sample Type: Field Duplicate

ND Not detected

- J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quantitation limits.
- J+ The result is an estimated quantity and may be biased high
- high.

 U The analyte was analyzed for, but was not detected.

Where applicable a hardness value of 200 mg CaCO3/L was used

Where applicable the X footnote was applied for a protected water source.

			MW-01S	MW-02I	MW-02I	MW-02I	MW-02I	MW-02I	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-03D	MW-03D	MW-03D	MW-03D	MW-03I	MW-03I	MW-03I	MW
			4/21/2022	5/02/2019	9/13/2019	12/10/2019	3/17/2020	4/21/2022	5/02/2019	9/13/2019	12/10/2019	3/17/2020	4/21/2022	5/03/2019	3/16/2020	7/29/2020	4/22/2022	5/02/2019	3/16/2020	7/29/2020	4/22/
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																			
Last Updated	0/10#	Onito																			
Exceedance Kev																					
General Parameters																					
Chloride	16887-00-6	ua/l		140000	120000	190000			18000	25000	18000	-		150000	130000			130000	100000		
Methane	74-82-8	ug/l			-		100000					360000			240000	10000			100	53	
Nitrogen, ammonia, as N	7664-41-7	ug/l		5500	4100	3400			11000	10000	8800			3300	3000			3500	990		
Solids, total dissolved		ug/l		420000	870000	690000 J			650000	1200000	1200000	-		330000	640000	640000		340000	680000	500000	
Sulfate, as SO4	14808-79-8	ug/l	47000	40000	45000	47000	< 3000 U		120000	< 3000 U	< 3000 U	51000	< 15000 U	< 1000 U	< 3000 U	< 3000 U		19000	80000	36000	
Field Parameters																					
pH		pH units	6.39					7.12		-			6.43				6.95				7.04
Total Metals																					
Arsenic	7440-38-2	ug/l	3	< 5.0 U	5.5	5.4		13	28	23	18	-	30	8.6	9.1		11	< 5.0 U	< 5.0 U		< 2 U
Chromium	7440-47-3	ug/l	< 5 U	< 10.0 U	-	< 10.0 U	-	< 5 U	< 10.0 U	_	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		6	< 10.0 U	< 10.0 U		< 5 U
Chromium, trivalent	16065-83-1	ug/l		< 10.0 U	-	-	-		< 10.0 U	-				< 10.0 U			-	< 10.0 U			
Copper	7440-50-8	ug/l	< 5 U	< 4.0 U		< 4.0 U		< 5 U	< 4.0 U	-	< 4.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U
Iron	7439-89-6	ug/l		1200	1600	1100			17000	18000	27000			8000	7900			2700	4000		
Lead	7439-92-1	ug/l	< 3 U	< 3.0 U		< 3.0 U		< 3 U	< 3.0 U		< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U
Magnesium	7439-95-4	ug/l		35000	35000	34000			70000	63000	53000			23000	22000			19000	19000		
Manganese	7439-96-5	ug/l		440	350	300			<u>4100</u>	2700	2400			280	280			560	420		
Mercury	7439-97-6	ug/l	< 0.2 U	< 0.20 U	-	< 0.20 U		< 0.2 U	< 0.20 U	-	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U
Selenium	7782-49-2	ug/l	< 5 U	< 5.0 U	-	< 5.0 U	-	< 5 U	< 5.0 U	-	< 5.0 U	-	< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U
Sodium	7440-23-5	ug/l			-	160000				-	49000	-			-						
Vanadium	7440-62-2	ug/l		< 4.0 U	-	-	-	-	< 4.0 U	-		-		28	-			< 4.0 U			
Per- and Polyfluoroalkyl Substances																					
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l	< 0.0021 U	0.01271		< 0.00727 U		< 0.0019 U	0.06419	-	< 0.00794 U			< 0.00341 U			0.0091	< 0.00319 U	0.05063	0.03657	0.036
Perfluorononanoic acid (PFNA)	375-95-1	ug/l		< 0.02097 U	-	< 0.00727 U			< 0.01000 U	-	< 0.00794 U		< 0.0020 U	< 0.01703 U			< 0.0020 U	< 0.01594 U	0.00768	0.01054	0.015 J
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	< 0.0021 U	< 0.00419 U		< 0.00727 U		< 0.0019 U	0.95865 J		< 0.00794 U		0.0023	< 0.00341 U			0.024	< 0.00319 U	0.82544	0.58845	0.54
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	0.0091	0.32794	-	< 0.00727 U		< 0.0019 U	<u>1.19185</u>	-	< 0.00794 U		0.0031	< 0.00341 U	-		0.25	0.02322	1.04763	1.07225	<u>0.88</u>

			-031	MW-03S	MW-03S	MW-03S	MW-03S	MW-04D	MW-04D	MW-04D	MW-04D	MW-04I	MW-04I	MW-04I	MW-04	MW-04S	MW-04S	MW-04S	MW-04S	MW-05D
			2022	5/02/2019	3/16/2020	7/29/2020	4/22/2022		3/17/2020			5/03/2019	3/17/2020	7/29/2020	4/22/2022	5/03/2019	3/17/2020	7/29/2020	4/22/2022	5/08/2019
				-	3/10/2020						4/22/2022	5/05/2019					3/1//2020		4/22/2022	
			FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																		I
Last Updated	0/10#	Onito																		
Exceedance Kev																				<u> </u>
General Parameters																				
Chloride	16887-00-6	ua/l		68000	31000			270000	240000			110000	90000			120000	290000			230000
Methane	74-82-8	ug/l			5200	3600			290	1100		-	87	140			360000	17000		
Nitrogen, ammonia, as N	7664-41-7	ua/l		13000	6700			7400	6500			1400	1100			1800	16000			310
Solids, total dissolved		ug/l		1300000	2500000	2600000		1700000	3000000	3600000		500000	860000	900000		570000	1900000	1800000		670000
Sulfate, as SO4	14808-79-8	ug/l		560000	940000	880000	460000	1500000	1500000	2800000		310000	360000	350000	-	7600	< 3000 U	< 3000 U	< 30000 U	58000
Field Parameters																				
pH		pH units	-	-	-		6.98				6.39				7.29				6.71	
Total Metals																				
Arsenic	7440-38-2	ug/l	< 2 U	< 5.0 U	< 5.0 U		3	< 5.0 U	5.8		5	6.5	9.2		12	< 5.0 U	< 5.0 U		2	< 5.0 U
Chromium	7440-47-3	ug/l	< 5 U	< 10.0 U	< 10.0 U		<u>13</u>	< 10.0 U	< 10.0 U		6	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		5	< 10.0 U
Chromium, trivalent	16065-83-1	ug/l		< 10.0 U				< 10.0 U				< 10.0 U				< 10.0 U				< 10.0 U
Copper	7440-50-8	ug/l	< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	<u>29</u>		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U
Iron	7439-89-6	ug/l		6900	47000			54000	64000			31000	33000			2700	52000			420
Lead	7439-92-1	ug/l	<u>25</u>	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U
Magnesium	7439-95-4	ug/l		120000	74000			180000	160000			22000	22000		-	37000	53000		-	23000
Manganese	7439-96-5	ug/l		850	1100			<u>2600</u>	2400			710	520			830	1200			190
Mercury	7439-97-6	ug/l	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U
Selenium	7782-49-2	ug/l	< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U	-	< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U
Sodium	7440-23-5	ug/l	-	-	-						-			-	-					
Vanadium	7440-62-2	ug/l	-	< 4.0 U	-			22	-	-	-	< 4.0 U			-	< 4.0 U			-	< 4.0 U
Per- and Polyfluoroalkyl Substances	055.10		0.000			0.00045::					0.0007		0.04047	0.0440:	0.0005	0.0004-		0.00047	0.0000::	0.0400:
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l	0.033	0.01217	< 0.00800 U	< 0.00617 U		< 0.00202 U	-			< 0.00200 U	0.01011	0.01121	0.0092	0.02015		< 0.00644 U	< 0.0020 U	0.04021
Perfluorononanoic acid (PFNA)	375-95-1	ug/l	0.01 J	< 0.01559 U		< 0.00617 U		< 0.01011 U			< 0.0021 U	< 0.01000 U	< 0.00675 U	< 0.00434 U	0.0026	< 0.01025 U		< 0.00644 U	0.0032	0.01293
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	0.52	0.14376	< 0.00800 U	< 0.00617 U	0.0053	0.01781	-		< 0.0021 U	0.00204	0.11019	0.11046	0.063	0.16833	< 0.00779 U	0.01531	0.01	0.90056
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	0.83	0.29101	0.01029	0.02573	0.036	0.04326			0.027	< 0.00200 U	0.29822	0.36752	0.24	0.19987	0.06551	0.08797	<u>0.08</u>	0.56968

			MW-05D	MW-05D	MW-05D	MW-05I	MW-05I	MW-05I	MW-05I	MW-05S	MW-05S	MW-05S	MW-05S	MW-06D	MW-06D	MW-06I		7-061	MW-06S	MW-06S
			3/18/2020	7/29/2020	4/20/2022	5/08/2019	3/18/2020	7/29/2020	4/20/2022	5/08/2019	3/18/2020	7/29/2020	4/21/2022	5/08/2019	4/22/2022	5/08/2019	4/22/	2022	5/09/2019	4/22/2022
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
Parameter	CAS#	Units																		
Last Updated																				
Exceedance Key																				
General Parameters																				
Chloride	16887-00-6	ug/l	< 10000 U			100000	86000			31000	22000			76000		100000			200000	
Methane	74-82-8	ug/l	14	43 J			4200	52			1300	78								
Nitrogen, ammonia, as N	7664-41-7	ug/l	180			2400	2000			310	220			1600	-	870		-	3900	
Solids, total dissolved		ug/l	580000	520000		1700000	1400000	290000		1000000	680000	310000	-	500000	-	640000			2100000	
Sulfate, as SO4	14808-79-8	ug/l	57000	49000		690000	< 3000 U	78000		400000	150000	42000	47000	54000	-	9500			620000	270000
Field Parameters																				
pH		pH units			7.89				8.33	-			8.20		7.73		7.13			7.16
Total Metals																				
Arsenic	7440-38-2	ug/l	< 5.0 U		< 2 U	< 5.0 U	< 5.0 U		< 2 U	< 5.0 U	< 5.0 U		< 2 U	5.6	14	< 5.0 U	< 2 U	< 2 U	6	12
Chromium	7440-47-3	ug/l	< 10.0 U		< 5 U	<u>17</u>	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 5 U	< 10.0 U	< 5 U	< 5 U	< 10.0 U	< 5 U
Chromium, trivalent	16065-83-1	ug/l				17				< 10.0 U			-	< 10.0 U	-	< 10.0 U			< 10.0 U	
Copper	7440-50-8	ug/l	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	6.8		< 5 U	< 4.0 U	< 5 U	< 4.0 U	< 5 U	< 5 U	< 4.0 U	< 5 U
Iron	7439-89-6	ug/l	580			< 200.0 U	280			260	< 200.0 U		-	500	-	2200			5200	
Lead	7439-92-1	ug/l	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3 U	< 3.0 U	< 3 U	< 3 U	< 3.0 U	< 3 U
Magnesium	7439-95-4	ug/l	22000			3000	4700			22000	16000			19000		21000			48000	
Manganese	7439-96-5	ug/l	240			< 50 U	< 50 U		-	150	94			53		550			130	
Mercury	7439-97-6	ug/l	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.2 U	< 0.20 U	< 0.2 U
Selenium	7782-49-2	ug/l	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5 U	< 5.0 U	< 5 U	< 5 U	< 5.0 U	< 5 U
Sodium	7440-23-5	ug/l								-			-		-					
Vanadium	7440-62-2	ug/l				13				< 4.0 U			-	21	-	< 4.0 U			< 4.0 U	
Per- and Polyfluoroalkyl Substances																				
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l			< 0.0020 U	0.00241	0.02118	< 0.00489 U	0.017	0.0071	0.01803	0.00735	0.014	0.0123		< 0.00493 U	0.0054	0.0057	< 0.00200 U	0.012
Perfluorononanoic acid (PFNA)	375-95-1	ug/l				< 0.01023 U	< 0.00713 U	< 0.00489 U	0.0021	< 0.01034 U		0.00329	< 0.0019 U			< 0.02465 U	< 0.0020 U	< 0.0020 U		0.0022
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l				< 0.00205 U	<u>0.1969</u>	0.16698	0.14	0.00667	0.48975	<u>0.34115</u>	0.097	0.06733	0.0055	< 0.00493 U	0.0083	0.0064	< 0.00200 U	0.035
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l			< 0.0020 U	0.00241	0.20635	0.07194	0.086	0.01664	0.24388	0.09921	0.072	0.09752	0.0043	< 0.00493 U	0.014	0.016	< 0.00200 U	0.085

			MW-07D 5/09/2019	MW-07D 4/20/2022	MW-07I 5/09/2019	MW-07I 4/20/2022	MW-08D 5/09/2019	MW-08D 3/19/2020	MW-08D	MW-08D 4/21/2022	MW-08I 5/09/2019	MW-08I 3/19/2020	MW-08I 7/30/2020	MW-08I 4/21/2022	MW-08S 5/09/2019	MW-08S 3/19/2020	MW-08S 7/30/2020	MW-		MW-09D 5/10/2019
			5/09/2019	4/20/2022	5/09/2019	4/20/2022	5/09/2019	3/19/2020		4/21/2022	5/09/2019	3/19/2020		4/21/2022		3/19/2020	l			-
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
Parameter	CAS#	Units																		
Last Updated																				
Exceedance Key																				
General Parameters																				
Chloride	16887-00-6	ug/l	55000		29000		63000	39000			380000	600000			67000	43000				100000
Methane	74-82-8	ug/l						17 J	17		-	6900	3400			800000	17000			-
Nitrogen, ammonia, as N	7664-41-7	ug/l	1000		6000		600	180			780	610		-	3400	2500				630
Solids, total dissolved		ug/l	1300000		1300000		620000	120000	300000		1100000	1300000	680000	-	3200000	2600000	1800000			1500000
Sulfate, as SO4	14808-79-8	ug/l	35000		60000		50000	50000	42000		95000	120000		-	15000	88000	83000	57000	46000	740000
Field Parameters																				
pH		pH units	_	9.30		12.27				7.96	-			8.34				7.70		
Total Metals																				
Arsenic	7440-38-2	ug/l	7.7	3	< 5.0 U	< 2 U	6	< 5.0 U		5	< 5.0 U	< 5.0 U		< 2 U	28	31		19	18	< 5.0 U
Chromium	7440-47-3	ug/l	<u>16</u>	< 5 U	< 10.0 U	< 5 U	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		< 5 U	130	70		<u>51</u>	50	< 10.0 U
Chromium, trivalent	16065-83-1	ug/l	16		< 10.0 U		< 10.0 U				< 10.0 U				123.4					< 10.0 U
Copper	7440-50-8	ug/l	15	< 5 U	< 4.0 U	< 5 U	9.3	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 5 U	< 4.0 U
Iron	7439-89-6	ug/l	47000		< 200.0 U		12000	390			540	240		-	2000	1600				1800
Lead	7439-92-1	ug/l	14	< 3 U	< 3.0 U	< 3 U	5.3	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	3	4.5		< 3 U	< 3 U	< 3.0 U
Magnesium	7439-95-4	ug/l	34000		< 1000 U		23000	8700			25000	18000		-	19000	12000				140000
Manganese	7439-96-5	ug/l	150		< 50 U		130	78			250	120		-	100	100				280
Mercury	7439-97-6	ug/l	< 0.20 U	< 0.2 U	< 0.20 U	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.2 U	< 0.20 U
Selenium	7782-49-2	ug/l	<u>5.4</u>	< 5 U	< 5.0 U	< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5 U	< 5.0 U
Sodium	7440-23-5	ug/l									-									
Vanadium	7440-62-2	ug/l	22		17		9.9				< 4.0 U				<u>89</u>					< 4.0 U
Per- and Polyfluoroalkyl Substances																				
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l	< 0.00423 U	0.0025	0.00787	< 0.0020 U	0.01925			< 0.0020 U	< 0.00325 U		0.00948	0.0085	0.00555	0.01214	0.01454	0.01	0.0076	0.0105
Perfluorononanoic acid (PFNA)	375-95-1	ug/l	< 0.02115 U	< 0.0021 U	< 0.01000 U		< 0.02338 U				< 0.01623 U		< 0.00629 U			< 0.01009 U	< 0.00927 U	0.0080	0.0076	< 0.01000 U
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	0.00908	< 0.0021 U	0.0707	< 0.0020 U	0.50866				< 0.00325 U	0.09257	<u>0.40101</u>	0.12	0.02687	6.95393	1.86262	<u>0.78</u>	0.74	<u>0.1371</u>
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	< 0.00423 U	< 0.0021 U	0.09717	0.0020	0.3249		-	< 0.0020 U	< 0.00325 U	0.06249	0.24858	0.032	0.01613	0.43136	0.7006	0.29	0.27	0.04489

			MW-09D	MW-09D	MW-09D	MW-09I	MW-09I	MW-09I	MW-09I	MW-09S	MW-09S	MW-09S	MW-09S	MW-10D	MW-10D	MW-10D	MW-10D	MW-10I	MW-10I	MW-10I	MW-10I
			3/19/2020	7/30/2020	4/21/2022	5/10/2019	3/19/2020	7/30/2020	4/21/2022	5/10/2019	3/19/2020	7/30/2020	4/21/2022	5/17/2019	3/20/2020	7/31/2020	4/25/2022	5/17/2019	3/20/2020	7/30/2020	4/25/2022
				7,50,2020	4,21,2022	3/10/2015			4,21,2022	3/10/2013				3/1//2013	3/20/2020	7,51,2020	4,23,2022	3/1//2013	3/20/2020	773072020	
			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																			
Last Updated																					$\overline{}$
Exceedance Key																					
General Parameters																					
Chloride	16887-00-6	ug/l	160000	-		130000	160000		-	78000	82000			100000	95000	-		91000	76000		
Methane	74-82-8	ug/l	1300	100		-	1300	720			< 1.0 U	120	-		51	80			4300	520	
Nitrogen, ammonia, as N	7664-41-7	ug/l	750	-		27	750			130	310			1700	1500			560	620		
Solids, total dissolved		ug/l	3500000	15000000		<u>610000</u>	3500000	1900000	-	830000	670000	450000	-	5500000	4000000	3400000		720000	820000	1200000	
Sulfate, as SO4	14808-79-8	ug/l	2200000	17400000		120000	2200000	1100000	-	300000	270000	59000	160000	2900000	2200000	1800000		180000	230000	610000	
Field Parameters																					
pH		pH units	-	-	6.90				7.89				7.65			-	6.19				6.99
Total Metals																					
Arsenic	7440-38-2	ug/l	< 5.0 U		7	< 5.0 U	< 5.0 U		< 2 U	< 5.0 U	< 5.0 U		2	< 5.0 U	< 5.0 U	-	3	5.8	8.4		9
Chromium	7440-47-3	ug/l	< 10.0 U	-	< 5 U	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		< 5 U	< 10.0 U	< 10.0 U		< 5 U
Chromium, trivalent	16065-83-1	ug/l				< 10.0 U				< 10.0 U				< 10.0 U				< 10.0 U			
Copper	7440-50-8	ug/l	< 5.0 U	-	< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U		< 5 U	< 4.0 U	< 5.0 U	-	< 5 U	< 4.0 U	< 5.0 U		< 5 U
Iron	7439-89-6	ug/l	13000	-		< 200.0 U	13000		-	< 200.0 U	300		-	9000	13000	-		8700	11000		
Lead	7439-92-1	ug/l	< 3.0 U	-	< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U	< 3.0 U	< 3.0 U		< 3 U
Magnesium	7439-95-4	ug/l	400000	_		5000	400000		-	10000	18000		-	580000	360000			14000	18000		
Manganese	7439-96-5	ug/l	540	-		< 50 U	540			63	78		-	<u>1700</u>	1700			110	180		
Mercury	7439-97-6	ug/l	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U	< 0.20 U	< 0.20 U	-	< 0.2 U	< 0.20 U	< 0.20 U		< 0.2 U
Selenium	7782-49-2	ug/l	< 5.0 U	-	< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U		< 5 U	< 5.0 U	< 5.0 U	-	< 5 U	< 5.0 U	< 5.0 U		< 5 U
Sodium	7440-23-5	ug/l																			
Vanadium	7440-62-2	ug/l				< 4.0 U			-	< 4.0 U				< 4.0 U				< 4.0 U			
Per- and Polyfluoroalkyl Substances		l																			
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l		-	< 0.0021 U	< 0.00229 U	0.00317		0.0027	0.01978	0.00279		< 0.0021 U	< 0.00229 U			< 0.0021 U	0.01978	0.01857	0.00816	0.0098
Perfluorononanoic acid (PFNA)	375-95-1	ug/l			< 0.0021 U	< 0.01147 U	< 0.00205 U		< 0.0020 U	< 0.01671 U	< 0.00206 U		< 0.0021 U	< 0.01147 U			< 0.0021 U	< 0.00334 U	0.01647	0.00749	0.0071
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l			< 0.0021 U	0.01361 J	0.02918		0.074	0.41101 J	0.02453		0.079	0.01361			< 0.0021 U	0.41101	1.25395	0.48951	0.4
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l			< 0.0021 U	< 0.00229 U	0.00836		0.018	0.36981	0.00798		0.019	< 0.00229 U			< 0.0021 U	0.36981	0.4233	0.18643	0.21

			MW-10S	MW-10S	MW-10S	MW-10S	MW-11D	MW-11I	MW-11S	MW-12D	MW	/-12l	MW-12S	MW-13D	MW-13I	MW-13S	MW-14D	MW-14I	MW-14S	MW-15D	MW-15I
			5/17/2019	3/20/2020	7/30/2020	4/25/2022	4/25/2022	4/25/2022	4/25/2022	4/26/2022	4/26	/2022	4/26/2022	4/26/2022	4/26/2022	4/26/2022	4/26/2022	4/25/2022	4/26/2022	4/25/2022	4/25/2022
			N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N
Parameter	CAS#	Units																			
Last Updated																					
Exceedance Key																					
General Parameters																					
Chloride	16887-00-6	ug/l	220000	140000								_			-		-				
Methane	74-82-8	ug/l		380000	6400			-				-			-		-		-		
Nitrogen, ammonia, as N	7664-41-7	ug/l	30000	20000								-									
Solids, total dissolved		ug/l	1800000	1300000	1400000			-				_			-		-		-		
Sulfate, as SO4	14808-79-8	ug/l	3900	< 3000 U	< 3000 U	< 30000 U		-	170000			_	< 30000 U		-	64000	-		36000		
Field Parameters																					
pH		pH units				6.38	7.87	7.46	7.08	7.96	7.69	-	7.83	8.01	7.97	11.5	7.99	7.93	7.49	7.64	7.51
Total Metals																					
Arsenic	7440-38-2	ug/l	< 5.0 U	< 5.0 U		2	3	< 2 U	6	2	< 2 U	< 2 U	5	2	3	9	2	< 2 U	< 2 U	10	< 2 U
Chromium	7440-47-3	ug/l	<u>60</u>	20		25	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<u>25</u>	< 5 U	< 5 U	5	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Chromium, trivalent	16065-83-1	ug/l	60									-	-		-	-	-		-		
Copper	7440-50-8	ug/l	14	7.1		8	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<u>56</u>	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Iron	7439-89-6	ug/l	19000	27000								-									
Lead	7439-92-1	ug/l	8	< 3.0 U		4	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	8	< 3 U	< 3 U	<u>47</u>	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U
Magnesium	7439-95-4	ug/l	56000	37000								-									
Manganese	7439-96-5	ug/l	950	870								_									
Mercury	7439-97-6	ug/l	< 0.20 U	< 0.20 U		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	0.3	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U
Selenium	7782-49-2	ug/l	< 5.0 U	< 5.0 U		< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Sodium	7440-23-5	ug/l										-									
Vanadium	7440-62-2	ug/l	13									-			-		-				
Per- and Polyfluoroalkyl Substances																					
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l	0.02908	0.02803	0.03178	0.023						< 0.0020 U			0.0046	0.035		< 0.0021 U	0.0028	< 0.0020 U	
Perfluorononanoic acid (PFNA)	375-95-1	ug/l	0.01717	< 0.00784 U	0.01286	0.0083		< 0.0020 U				< 0.0020 U		< 0.0020 U		0.0079		< 0.0021 U			
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	1.17948 J	0.89051	0.99306	0.69	< 0.0020 U		0.0061	< 0.0020 U		0.0029	0.025	0.0044	0.0056	0.35		< 0.0021 U		< 0.0020 U	
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	0.72993	<u>0.58121</u>	0.68474	0.4	< 0.0020 U	< 0.0020 U	0.0092	< 0.0020 U	0.0027	0.0022	0.017	< 0.0020 U	0.0033	<u>0.16</u>	< 0.0021 U	< 0.0021 U	0.014	< 0.0020 U	< 0.0019 U

			MW-15S	TM	W-1	TMW-2	TW-01	TW-01	TW-01	TW-01	TW-01	TW	<i>I</i> -01	TW-02	TW-02	TW-02	TW-02	TW-03	TW-03	TW-03	TW-03	TW-03
			4/25/2022	6/27/	/2022	6/27/2022	10/10/2018	9/13/2019	12/10/2019	3/16/2020	7/29/2020	4/25	/2022	10/10/2018	9/13/2019	12/10/2019	3/16/2020	10/10/2018	12/10/2019	3/16/2020	7/31/2020	4/21/2022
			N	N	FD	N	N	N	N	N	N	N	FD	N	N	N	N N	N	N	N	N	N
Parameter	CAS#	Units																				
Last Updated																						
Exceedance Key																						
General Parameters																						
Chloride	16887-00-6	ug/l						210000	210000						13000	10000			25000			
Methane	74-82-8	ug/l								71000	18000						82000			250000	12000	
Nitrogen, ammonia, as N	7664-41-7	ug/l			-			16000	14000						5000	3400	_		42000			
Solids, total dissolved		ug/l	-				860000	960000	920000		920000		-	1200000	1200000	1200000	-	2200000	1600000		2200000	
Sulfate, as SO4	14808-79-8	ug/l	< 30000 U			-	1600	< 3000 U	19000	17000	< 3000 U	< 30000 U	< 30000 U	500000	< 3000 U	< 3000 U	< 3000 U	36000	120000	120000	69000	110000
Field Parameters																						
рН		pH units	6.80	7.27	-	11.82	-					6.41	-	-			-					6.81
Total Metals																						
Arsenic	7440-38-2	ug/l	< 2 U			-	< 5.0 U	8.4	< 5.0 U			4	4	< 5.0 U	< 5.0 U	< 5.0 U	-	< 5.0 U	< 10.0 U			3
Chromium	7440-47-3	ug/l	< 5 U		-		< 10.0 U		< 10.0 U			< 5 U	< 5 U	< 10.0 U		< 10.0 U	-	< 10.0 U	< 10.0 U			10
Chromium, trivalent	16065-83-1	ug/l	-				< 10.0 U						-	-			-	< 10.0 U				-
Copper	7440-50-8	ug/l	< 5 U		-		< 4.0 U		< 4.0 U			< 5 U	< 5 U	< 4.0 U		< 4.0 U		< 4.0 U	< 8.0 U			< 5 U
Iron	7439-89-6	ug/l						34000	32000						9300	6300			590			
Lead	7439-92-1	ug/l	< 3 U				< 3.0 U		< 3.0 U			< 3 U	< 3 U	< 3.0 U		< 3.0 U	_	< 3.0 U	< 4.0 U			< 3 U
Magnesium	7439-95-4	ug/l						23000	27000						39000	48000	-		49000			-
Manganese	7439-96-5	ug/l			-			810	590						<u>1900</u>	<u>1800</u>	-		190			
Mercury	7439-97-6	ug/l	< 0.2 U				< 0.20 U		< 0.20 U			< 0.2 U	< 0.2 U	< 0.20 U		< 0.20 U		< 0.20 U	< 0.20 U			< 0.2 U
Selenium	7782-49-2	ug/l	< 5 U		-	-	< 5.0 U		< 5.0 U			< 5 U	< 5 U	< 5.0 U		< 5.0 U	-	< 5.0 U	< 8.7 U			< 5 U
Sodium	7440-23-5	ug/l					-		150000							43000			600000			
Vanadium	7440-62-2	ug/l																				
Per- and Polyfluoroalkyl Substances																						
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l	0.0063	< 0.0020 U	< 0.0020 U	0.019			0.05731			<u>0.13</u>	0.12			< 0.00830 U			< 0.00960 U			0.013
Perfluorononanoic acid (PFNA)	375-95-1	ug/l	< 0.0020 U	< 0.0020 U	< 0.0020 U	0.0072			< 0.00888 U			0.0024	0.0027			< 0.00830 U			< 0.00960 U			< 0.0020 U
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	0.0074	0.014	0.014	0.47	0.01436		< 0.00888 U			<u>0.018</u>	0.017	0.01138		< 0.00830 U		0.05526	< 0.00960 U			0.099
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	0.012	0.0057	0.0062	0.13	0.13835		<u>1.14101</u>			1.7	1.8	0.01631		< 0.00830 U		0.11009	< 0.00960 U		-	0.18

			TW-07	TW-07	TW-08	TW-08	TW-09	TW-10	TWVP-19-MW	TWVP-20-MW	TWVP-21-MW	TWVP-22-MW	TWVP-23-MW
			10/11/2018	4/22/2022	10/11/2018	4/25/2022	4/21/2022	4/21/2022	4/12/2019	4/12/2019	4/12/2019	4/12/2019	4/12/2019
			N	N	N	N	N	N	N	N	N	N	N
Parameter Last Updated	CAS#	Units											
Exceedance Key													
General Parameters													
Chloride	16887-00-6												
Methane	74-82-8	ug/l	-	-		-			 < 0.20 U	 < 0.20 U	< 0.20 U	< 0.20 U	 < 0.20 U
Nitrogen, ammonia, as N	7664-41-7	ug/l											
Solids, total dissolved	/664-41-/	ug/l	500000		9300000							_	
	14808-79-8	ug/l	24000	37000	1200000	290000		< 15000 U				-	
Sulfate, as SO4 Field Parameters	14808-79-8	ug/l	24000	37000	1200000	290000	< 15000 U	< 15000 U				-	
				40.00		40.04	0.50	0.50					
pH		pH units		<u>10.20</u>		<u>12.71</u>	6.58	6.53				-	
Total Metals							_						
Arsenic	7440-38-2	ug/l	< 5.0 U	5	< 10.0 U	4	5	< 2 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	6.4
Chromium	7440-47-3	ug/l	< 10.0 U	7	<u>110</u>	< 5 U	< 5 U	< 5 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U
Chromium, trivalent	16065-83-1	ug/l			110							-	
Copper	7440-50-8	ug/l	<u>32</u>	14	< 8.0 U	< 5 U	< 5 U	< 5 U	6	< 4.0 U	< 4.0 U	9.6	< 4.0 U
Iron	7439-89-6	ug/l											
Lead	7439-92-1	ug/l	3.9	< 3 U	<u>18</u>	< 3 U	< 3 U	< 3 U	3.2	< 3.0 U	< 3.0 U	< 3.0 U	< 3.0 U
Magnesium	7439-95-4	ug/l										-	
Manganese	7439-96-5	ug/l										-	
Mercury	7439-97-6	ug/l	0.27	< 0.2 U	< 0.20 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Selenium	7782-49-2	ug/l	< 5.0 U	< 5 U	< 8.7 U	< 5 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Sodium	7440-23-5	ug/l	-					-				-	
Vanadium	7440-62-2	ug/l										-	
Per- and Polyfluoroalkyl Substances													
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	ug/l		0.0064		< 0.0021 U	0.0031	0.0029				-	
Perfluorononanoic acid (PFNA)	375-95-1	ug/l		0.0029		< 0.0021 U		< 0.0020 U				-	
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	ug/l	1.32582	0.29	0.00218	0.0027	0.0081	0.0073					
Perfluorooctanoic acid (PFOA)	335-67-1	ug/l	<u>0.14514</u>	0.037	0.00957	0.0069	0.057	0.074				-	

- 1 SITE ENTRANCE SINGLE FAMILY STAGGERED LOT (26'-22' X 205' TYP) - MAY BE COMBINED TO CREATE LARGER WATERFRONT
- SINGLE FAMILY ALIGNED LOT (34 X 150'T YP.) MAY BE COMBINED TO CREATE LARGER WATERFRONT LOTS
- 40 -10-12 UNIT FRONT-LOADED CONDO "MANSION LOTS (100 X 150 TYP.)
- 10-12 UNIT REAR-LONDED COMMO MANSION LOTS (100 X 115 TYP) 4TO 6 STORY APARTMENT OR CONDO BUILDING WITH GROUND FLOOR PARKING OR POSSIBLE FUTURE GROUND FLOOR RETAIL (BUILDINGS A1-44)

- 8 REAR LOAD ROWHOUSES (18 X 40 TYP.) [R1-R35]
- MIXED-USE BUILDING (GROUND FLOOR RETAIL, APARTMENT SABOVE) (MU1-MU4

- IN-OUT DRY BOAT STORAGE (155 X 720 BUILDING WITH APPROXIMATELY 350 STORAGE SPACES)
- MARINA RESTROOMS
- (12) CLUBHOUSES WITH POOLS AND SPORT COURTS
- (14) RETAL BUILDING
- 15 PUBLIC NATUREVIEW BOARDWALK PUBLIC PARKLET WITH WATERFRONT ACCESS AND FISHING DOCK
- PUBLIC PARKLET WITH BOARDWALK, FISHING PLATFORM, AND KAYAK LAUNCH
- (18) MULTI-MODAL TRAIL CONNECTOR
- POOL AND RESTROOM BUILDING FOR WINDWARD POINTE RESIDENTS
- (20) BOAT HOIST/WASH STATION AREA

- STAIGING SLIPS FOR INVOLT SERVICE AND GAS DOCK!
 PUMP DUT BOCK
- FENCED DOG PARKAND POLLINATOR GARDEN AREA
- WOODLAND PRESERVATION AREA AND ON LEASH DOG PARK
- 25) FUTURE RESTAURANT
- BREAKWALLWAVE ATTENUATOR WITH PUBLIC WALKING PATH, FISHING PLATFORM AND TRANSIENTIVISTOR/ SHOPPER DOCKING ON NORTH AND SOUTH SIDES OF PIER
- POSSIBLE FUTURE 1103-STORY RETAILOFFICE STACK, WHICH MAY INCLUDE COFFEE SHOP, SWIDWICH SHOP, CONVENIENCE STORE, SHIP STORE, MARINA OFFICE, AND OR ROOFFOP DECX.
- (28) GAS DOCK AND SERVICE OFFICE
- TRAFFIC CALMING STREET TREATMENTS (E. Q. ROUNDABOUT, SIGNALIZED BIK E CROSSING) TO BE COORDINATED WITH CITY OF MUSKEGON

- SITEAREA ZONING OF PROPERT
- BOAT STORAGE BOAT DOCKING SPACES

18.64 D.U/AC.

42,780 SQ.FT.

111,600 SQ.FT. (350 SPACES)

- 2400 & 2850 LAKESHORE DR. MUSKEGON, MICHIGAN 122.94 AC. PUD IPLANNED UNIT DEVELOPMENT)

- RONHOUSES IN 1838

 A ALLOWARD USES: ATTACHED SINGLEFAMLY DWELLINGS

 LANAHUM BUILDON 1938AT = 3 STORES OR SEFT, WHOREVER IS LESS

 MINIMUM BUILDONS TO BUILDING SEFAMATION PROUNDATION WALLTO POLINDATION WALLTON TO SUMBATION PROUNDATION WALLTON TO SUMBATION WALLTON TO SUMBATION PROUNDATION WALLTON TO SUMBATION WAS A STANDARD OF THE SUMBATION WAS A STAN WALL) = 16 FT.

 4. MINIMUM DISTANCESTO ADJACENT ROAD OR SIDEMALK = 10 FT.

FRONT-LOADED MANSION LCTS (M1-MSD & M41-MSD) 1. ALLOWABLE USES: MUUTIFLE FAMILY DWELLING 2. MAXIMUM BUILDING HEIGHT = 5 STORIES OR 80 FT., WHICHEVER IS LESS

SIDE YARD = 5 FT, MIN. REAR YARD = 15 FT, MIN

- REAR LOADED MANSION LOTS (M21-M40)

 1. ALLOWARE USES MULTIPLE FAMILY DWELLING

 2. MAXIMUM BUILDING HEIGHT 5 STORIES OR 80FT, WHICHEVER IS LESS

- ALIGNED LOTS D4 X 150 TYP.

 1. ALLOWABLE USES: DETACHED SINGLE FAMILY DWELLING
 2. MAXIMUM BUILDING HEIGHT = 3 ST DRIES PLUS BASEMENT
 3. SETEMACKS.
- FRONT VARD = 22 FT, MIN. SIDE YARD = 5 FT, MIN. REAR YARD = 15 FT, MIN. FROM D.H.W.M WALL) = 25 FT.

 4. MINIMUM DISTANCE TO AJACENT ROADS (EXCLUDES PARKING DRIVE AISLES) = 25 FT. STAGGERED LOTS [22:28.X.205.T.YP.] 1. ALLOWASLE USES: DETACHED SINGLE FAMILY DWELLING 2. MAXIMUM BUILDING HEIGHT = 3 STORIES PLUS BASEMEN
 - STBACKS FRONT VARD = 22 FT. MIN. SIDE VARD = 0 FT. MIN. REAR VARD = 15 FT. MIN. FROM O.H.W.M.

CLUBHOUSE INTE FEATURES 12AND 11 DRITHE FLAM! 1. ALLOWARDE USES COMMUNITY CENTER: EVENT CENTER RECREATION CENTER RESTAURANT, COCKTAL LOUNCE, AND RESPUNDE, AND MUSIC VENUE (INDOOR AND COTTOORS) 2. MAINING USUADING HEIGHT = 3 STORES OR 50 FT, WINDHOLDEN STATES 3. MAINING DISTANCE TO GRAD AS CENTED TO THIRS = 15 FT.

BOAR STORAGE BUILDING

1. ALLOWARE USER BOAT STORAGE AND SIMILAR OR ACCESSORY USE, PREMITTED USES WITHIN THE B2 DISTRICT

2. MANIMOUR BUILDING HERGHT = 50 FT.

- SPEED LIMIT THROUGHD. THE PROVINCES DEPLOYING THE LEE ALMANUN OF 1 SHATE.

 SPEED LIMIT THROUGH AND ALL SHATE LIMIT OF LI

- INCLUDIO XAME LANGUES, NET UNA L'EXCUEST. TANLE, TENNIS C. RETONIS, TANNES, CLIMICOSEES, EXE FINAN, RETALL CORROCOSIO, DOI OLI COLOR DE L'EXCUEST. CONTRO CO

- 11. DISCISION O CONTRETE O PRISIDIONAL ANA RET IN-MUSICI DI SE PROVINCIA DI CONTRETA DI CO

WINDWARD POINTE

FINAL PUD PLAN - PHASING PLAN

Windward Pointe

March 4, 2024

Nederveld Project 23201268 Utility and Road Schematic Plan (Phase One outlined in orange)

October 31, 2023

Mr. Jon Rooks Parkland Acquisition Six, LLC 75 W. Walton Avenue, Suite A Muskegon, MI 49440

RE: Soil Gas Methane Evaluation

Windward Pointe

2400 Lakeshore Drive, Muskegon, Michigan

ERG Project Number: 10179

Dear Mr. Rooks,

Environmental Resources Group, LLC (ERG) is pleased to provide this summary letter presenting the results of a methane investigation to provide a preliminary understanding of the presence of subsurface methane (CH₄) and its potential impacts on construction and redevelopment activities proposed at Windward Pointe, Muskegon, Michigan (Site).

Supplemental Sampling Locations and Sampling

From September 25 through 29, 2023, ERG installed 25 soil gas wells across the property. The soil gas wells were installed with a vapor screen set at five (5) feet below grade level (bgl). The sampling locations were selected after reviewing the locations of the residences to be constructed in Phase I of the redevelopment process. ERG collected soil gas field screening data and samples for laboratory analyses at the 25 soil gas well locations on October 3 and 4, 2023. ERG collected the soil gas samples following standard soil gas collection guidelines. The soil gas samples were submitted to Merit Laboratories, Inc. for analytical testing but were analyzed by Trace Laboratories, Inc. of Muskegon, Michigan. Figure 1 presents the sampling locations.

Subsurface Methane Concentrations

During installation of the soil gas wells and as part of the soil gas well sampling, ERG field screened the locations for the Lower Explosive Limit (LEL) percentage using a 5-gas / photoionization detector (PID) meter calibrated for CH_4 in ambient air and also used a GEM meter to directly read CH_4 concentrations, as well as other soil gas indicators, including volatile organic compounds (VOCs), carbon dioxide (CO_2), and oxygen (O_2) in the soil gas wells. The field measured CH_4 concentrations in soil gas at these locations ranged from 0% to 62.7% by volume. Table 1 presents detected CH_4 concentrations in the soil gas wells as well as select LEL readings when a 5-gas / PID meter was utilized to detect VOCs rather than a standard PID. The LEL of the sample locations screened with the 5-gas / PID ranged from 0% to overlimit (i.e., > 100%). When LEL is greater than 100%, the sample contains more than 5% of CH_4 by volume. Also, 100%

Windward Pointe Soil Gas Methane Evaluation October 31, 2023 Page 2

LEL (5% of CH₄ by volume) presents the lower flammable limit. Industry practice uses the 10% LEL monitoring reading as the initial response action threshold with more aggressive response actions triggered with increasing LEL readings.

In general, a CH₄ concentration between 5% and 17% by volume is considered the explosive range where it will support ignition and is highly flammable. The concentrations over 17% are not explosive as the air is too rich in CH₄. However, once the environment is altered such that subsurface concentrations are exposed to the atmosphere (e.g., through construction activities), CH₄-rich concentrations may be readily and unpredictably diluted to explosive concentrations.

In addition to field screening measurements, ERG evaluated the laboratory analytical results. Based on the analytical results, the maximum CH_4 concentrations in soil gas was 430,000,000 $\mu g/m^3$. The results also indicated the presence of subsurface CH_4 over 100% LEL. Analytical data is included as Table 2.

Active Methane Source

As presented in Table 1, percent CO_2 is also high in the samples with high CH4 concentrations. Therefore, the subsurface locations with high CH_4 concentrations could indicate the presence of methanogenesis (an anaerobic digestion process), a reductive process which occurs under anaerobic conditions. Anaerobic digestion is an organic matter decomposition process in the absence of oxygen. The concentration of CH_4 usually stays below 0.1% in the soil gas when there is no active source.

Due to the presence of buried organic material and anaerobic subsurface conditions, the site requires design and implementation of long-term mitigation strategies.

Methane Risk Considerations – During Construction

CH₄ appears to be abundant in subsurface locations largely due to anaerobic decomposition of the known buried organic material. It is an odorless and colorless gas that is lighter than air. Methane can migrate underground or accumulate in pockets depending on the soil properties. Methane is known to cause accidents and fatalities at construction sites when it is not adequately acknowledged and prepared for properly. For example, CH₄ can combust when an excavator strikes a rock or other hard objects, causing a spark, in a CH₄-rich location (over 5% by volume). In addition to potential explosions and fire, CH₄ can asphyxiate workers as it readily displaces oxygen in the air.

The detection of elevated subsurface CH₄ concentrations throughout the Site represents significant explosive and oxygen depletion hazards during the proposed redevelopment construction activities. Therefore, ERG recommends the following considerations:

1. Develop and implement a comprehensive Site-wide strategy for CH₄-related Site safety procedures, including, but not limited to: gas detection and monitoring, personal protective equipment (PPE) including breathing apparatus, active ventilation within any subsurface work zones, use of non-spark equipment, and emergency response procedures. Strategies and

Windward Pointe Soil Gas Methane Evaluation October 31, 2023 Page 3

- procedures must be identified and implemented to eliminate any source of ignition at all times and cover all hot work, site excavation, electrical, and combustion engine operation.
- 2. Monitoring for CH₄ should be required prior to and throughout construction work. Use of gas detectors throughout the Site (especially where high CH₄ concentrations were detected) should be required for both personnel and equipment. Portable gas detectors that provide sound and light indications at elevated LELs are used at construction sites with elevated CH₄ concerns. Typically, these detectors are placed and or used at the work breathing zone at all times. In addition, they are placed throughout finished excavation depths (bottom, middle, top, etc.) and monitored frequently for methane accumulation. Subsurface methane monitoring in the vicinity is required to eliminate potential hazards during excavation activities. This could be accomplished by monitoring methane at a borehole(s) near the excavation activity.
- 3. Work task procedures and precautions should be clearly identified in and strictly enforced for trenching, excavation, and confined spaces (at, near to or below grade).

Methane Risk Considerations - Mitigation of Buildings/Open Areas

Currently, in an undeveloped Site status, the only mechanism available for subsurface CH₄ transport into the atmosphere is changes in the atmospheric pressure. When the atmospheric pressure increases, air flows into the ground and dilutes CH₄. When the atmospheric pressure decreases, soil gas expands and CH₄ will be emitted to the atmosphere. According to Intergovernmental Panel on Climate Change (IPCC), high groundwater levels could reduce the pore space available for CH₄ increasing its concentration in the soil. The proposed construction site is located near a large water body with a high water table. Therefore, the shallow and fluctuating groundwater table could be a potential additional cause for CH₄ accumulation at the site in the shallow soil gas. However, potential dewatering and below grade construction activities could alter groundwater movements and gas pressure in the pore spaces, leading to CH₄ migration to buildings or underground utilities. Also, during construction work, new routes for CH₄ migration (or venting routes) could occur. Therefore, ERG recommends the following considerations for the new development:

- 1. Design all buildings to prevent CH₄ intrusion into indoor air and minimize concentration buildup around foundations and beneath floor slabs (via Sub-slab depressurization, cut off trenches, etc.).
- 2. Design all subsurface utility corridors to prevent CH₄ intrusion into trenches and piping.
- 3. Monitor CH₄ emissions (i.e., soil CH₄ flux) from the ground at the proposed open space areas utilizing a flux chamber technique. Areas with marginal or unacceptable soil flux measurements will require a passive and/or active mitigation system or systems to confidently control emissions such as:
 - Oxidize CH₄ prior to venting to the atmosphere to control and reduce fugitive CH₄ emissions. An effective option available to treat diffusive sources of CH₄ is biocovers. It is a passive method used to mitigate fugitive CH₄ emissions and typically consists of a porous geofabric and an organic material such as compost. Methanotrophic bacteria in the

Windward Pointe Soil Gas Methane Evaluation October 31, 2023 Page 4

- compost layer is utilized to oxidize CH₄ into carbon dioxide. Biocovers could be incorporated into the site landscaping and other green spaces.
- Active methane soil gas venting to control soil gas movement, capture and management away from buildings and infrastructure.
- 4. Mitigation alternatives may likely need to undergo a pilot study or other field demonstrations to further evaluate and confirm effectiveness for the various proposed structures and infrastructure at the corresponding areas of the Site.

These discussions, conclusions, and recommendations are based on available project information and data obtained as indicated. Variations in soil gas, soil and groundwater conditions will commonly occur between or away from sampling locations. The nature and extent of variations may not become evident until additional testing is performed, until the time of construction, or later. If significant variations are observed, the conclusions and recommendations presented herein must be reevaluated.

Implementation of the conclusions and recommendations contained in this report may affect the design, construction, and performance of the proposed improvements, along with the potential inherent risks involved with the proposed construction. The client and key members of the design team, including ERG, should discuss the issues covered in this report so these issues are understood and applied in a manner consistent with the Owner's budget, tolerance of risk, and expectations for performance and maintenance. ERG should be retained to review design details, project plans, and specifications to verify those documents are consistent with conclusions and recommendations contained in this and possible future reports.

We appreciate this opportunity to provide this evaluation for you. Should you have questions or need additional information feel free to contact us.

Sincerely,

ENVIRONMENTAL RESOURCES GROUP, LLC

Mala C. Hettiarachchi, PE, PhD

Senior Engineer

Duncan R. Mein, PE

Senior Engineer

Alfred J. Jordan II, CPG Executive Vice President

Attachments

TABLE 1
Field Screening Data
Windward Pointe
2400 Lakeshore Drive, Muskegon, MI

Sample Location	Date	Time	VOCs (ppm)	% LEL	CO (ppm)	CH4 (%BV)	CO2 (%BV)	O2 (%BV)
	9/28/2023	11:26	0.0	-	0.0	0.1%	11.8%	5.9%
VP-1-23	9/29/2023	14:39	0.0	0.0%	1.0	0.0%	11.1%	6.1%
	10/3/2023	14:18	0.0	-	4.0	0.0%	9.9%	0.0%
	9/28/2023	12:11	14.3	-	1.0	2.3%	6.4%	<<<<
VP-2-23	9/29/2023	14:57	9.0	34.0%	2.0	2.0%	6.1%	0.0%
	10/3/2023	14:59	13.6	-	10	1.3%	5.7%	0.0%
	9/28/2023	12:44	0.0	-	2.0	59.8%	36.8%	<<<<
VP-3-23	9/29/2023	15:34	0.0	>100%	4.0	57.3%	36.6%	0.0%
	10/3/2023	15:28	0.0	-	10.0	53.8%	36.6%	0.0%
	9/28/2023	13:12	0.0	-	3.0	63.2%	36.8%	<<<<
VP-4-23	9/29/2023	16:04	0.0	>100%	0.0	62.7%	37.3%	0.0%
	10/3/2023	16:10	0.0	-	8.0	59.6%	38.6%	0.0%
) (D E 22	9/28/2023	13:46	0.0	- 4000/	3.0	59.4%	38.8%	<<<<
VP-5-23	9/29/2023	16:28	0.0	>100%	0.0	57.9%	38.8%	1.2%
	10/3/2023	16:45	0.0	-	1.0	28.8%	39.0%	0.0%
VP-6-23	9/28/2023	14:27	0.9	- OF OR/	1.0	4.6%	21.8%	0.0%
VP-6-23	9/29/2023	16:46	0.0	95.0%	0.0	5.2%	22.5%	0.0%
	10/3/2023	17:28	0.5	-	6.0	8.2%	23.0%	0.0%
\(D. 7. 22	9/28/2023	14:55	0.2		1.0	0.0%	15.5%	6.0%
VP-7-23	10/2/2023	9:41	0.0	0.0%	1.0	0.0%	15.4%	6.5%
	10/4/2023	8:40	0.0	-	1.0	0.0%	15.5%	6.7%
VP 0 22	9/28/2023	15:39	0.0	-	4.0	31.5%	20.4%	8.0%
VP-8-23	10/2/2023	10:50	0.0	-	6.0	51.3%	28.3%	0.0%
	10/4/2023	8:55	0.2	-	1.0	60.2%	30.8%	0.0%
VD 0 00	9/28/2023	16:07	2.0	-	0.0	0.1%	17.3%	<<<<
VP-9-23	10/2/2023	11:22	1.4	-	2.0	0.0%	17.1%	<<<<
	10/4/2023	9:05	0.9	-	1.0	0.1%	17.9%	0.0%
	9/28/2023	16:44	0.1	-	1.0	0.0%	9.9%	8.9%
VP-10-23	10/2/2023	11:48	0.0	-	3.0	0.0%	9.2%	9.3%
	10/4/2023	9:30	0.0	-	0.0	0.0%	9.9%	9.9%
	9/28/2023	17:12	0.3	-	3.0	3.7%	17.7%	2.8%
VP-11-23	10/2/2023	13:06	0.3	-	4.0	5.0%	20.3%	0.1%
	10/4/2023	9:45	0.2	-	0.0	8.2%	23.1%	0.0%
	9/28/2023	18:57	0.0	-	0.0	0.1%	16.5%	2.9%
VP-12-23	10/2/2023	14:06	0.0	-	0.0	0.1%	16.5%	2.8%
	10/2/2023	14:21	0.0	-	0.0	0.0%	14.4%	3.7%
	10/4/2023	10:00	0.0	-	0.0	0.1%	15.9%	4.1%
	9/28/2023	19:26	0.0	-	0.0	0.1%	0.8%	19.5%
VP-13-23	10/2/2023	14:37	0.0	-	2.0	0.0%	0.5%	10.6%
	10/2/2023	14:48	0.0	-	0.0	0.0%	6.1%	18.0%
	10/4/2023	10:15	0.0	-	0.0	0.0%	0.7%	19.6%
	9/29/2023	8:18	0.0	-	0.0	0.1%	1.7%	18.7%
VP-14-23	10/2/2023	15:46	0.0	-	0.0	0.0%	1.2%	18.8%
	10/4/2023	10:30	0.0	-	0.0	0.0%	1.4%	19.0%
VD 45 33	9/29/2023	8:51	7.0	-	42.0	20.2%	0.1%	10.9%
VP-15-23	10/2/2023	16:23	2.9	-	85.0	44.0%	0.0%	0.0%
	10/4/2023	10:45	3.5	-	33.0	46.0%	0.0%	0.0%
\mu_45	9/29/2023	9:18	1.0	-	1.0	0.3%	0.5%	19.7%
VP-16-23	10/2/2023	17:15	0.0	-	0.0	2.4%	1.7%	18.6%
	10/4/2023	11:00	0.0	-	37.0	8.5%	4.4%	15.3%
,	9/29/2023	9:45	0.3	-	0.0	0.1%	9.7%	7.8%
VP-17-23	10/2/2023	17:57	0.1	-	0.0	0.0%	9.6%	7.4%
	10/4/2023	11:25	0.2	-	2.0	0.0%	10.3%	6.7%
VP-18-23	9/29/2023	010:16	0.4	-	24.0	0.8%	6.8%	9.8%
	10/3/2023	8:20	0.2	-	2.0	1.8%	13.4%	1.5%
VP-19-23	9/29/2023	10:40	0.6	-	0.0	0.1%	1.6%	15.0%
	10/3/2023	8:57	0.0	-	1.0	0.0%	2.8%	0.0%
VP-20-23	9/29/2023	11:05	0.0	-	0.0	0.0%	0.1%	17.0%
	10/3/2023	9:45	0.0	-	1.0	0.0%	0.2%	17.0%
VP-21-23	9/29/2023	11:32	0.3	-	35.0	0.4%	14.4%	0.0%
	10/3/2023	10:24	0.2	-	6.0	0.1%	15.1%	0.0%
VP-22-23	9/29/2023	11:57	0.0	-	9.0	29.3%	20.9%	<<<<
	10/3/2023	11:07	0.0	-	5.0	31.0%	22.9%	0.0%
VP-23-23	9/29/2023	12:20	0.0	-	0.0	0.3%	1.8%	17.2%
	10/3/2023	11:33	0.0	-	2.0	0.3%	1.7%	16.2%
VP-24-23	9/29/2023	12:46	0.1	-	2.0	20.4%	25.4%	<<<<
	10/3/2023	12:30	0.0	-	10.0	19.8%	25.0%	0.0%
VP-25-23	9/29/2023	13:17	0.0	-	0.0	0.0%	0.3%	18.0%
	10/3/2023	13:27	0.0	-	5.0	0.0%	0.3%	18.0%

TABLE 2
Methane Analytical Data
Windward Pointe
2400 Lakeshore Drive, Muskegon, MI

LAB ID	SAMPLE ID	ERG SAMPLE ID	DATE SAMPLED	PARAMETER	RESULTS	UNITS
23J0346-12	S54173.12	Field Blank	10/3/2023	Methane	<6,600	ug/m³
23J0346-27	S54173.27	M-DUP1A	10/4/2023	Methane	85,000	ug/m³
23J0346-09	S54173.09	SG-VP-1-23	10/3/2023 2:15:00 PM	Methane	<6,600	ug/m³
23J0346-10	S54173.10	SG-VP-2-23	10/3/2023 3:30:00 PM	Methane	14,000,000	ug/m³
23J0346-11	S54173.11	SG-VP-3-23	10/3/2023 3:50:00 PM	Methane	410,000,000	ug/m³
23J0346-13	S54173.13	SG-VP-4-23	10/3/2023 4:25:00 PM	Methane	430,000,000	ug/m³
23J0346-14	S54173.14	SG-VP-5-23	10/3/2023 5:15:00 PM	Methane	420,000,000	ug/m³
23J0346-15	S54173.15	SG-VP-6-23	10/3/2023 5:45:00 PM	Methane	50,000,000	ug/m³
23J0346-16	S54173.16	SG-VP-7-23	10/4/2023 8:40:00 AM	Methane	8,300	ug/m³
23J0346-17	S54173.17	SG-VP-8-23	10/4/2023 8:55:00 AM	Methane	320,000,000	ug/m³
23J0346-18	S54173.18	SG-VP-9-23	10/4/2023 9:05:00 AM	Methane	100,000	ug/m³
23J0346-19	S54173.19	SG-VP-10-23	10/4/2023 9:30:00 AM	Methane	<6,600	ug/m³
23J0346-20	S54173.20	SG-VP-11-23	10/4/2023 9:45:00 AM	Methane	86,000,000	ug/m³
23J0346-21	S54173.21	SG-VP-12-23	10/4/2023 10:00:00 AM	Methane	<6,600	ug/m³
23J0346-22	S54173.22	SG-VP-13-23	10/4/2023 10:15:00 AM	Methane	<6,600	ug/m³
23J0346-23	S54173.23	SG-VP-14-23	10/4/2023 10:30:00 AM	Methane	<6,600	ug/m³
23J0346-24	S54173.24	SG-VP-15-23	10/4/2023 10:45:00 AM	Methane	300,000,000	ug/m³
23J0346-25	S54173.25	SG-VP-16-23	10/4/2023 11:00:00 AM	Methane	12,000,000	ug/m³
23J0346-26	S54173.26	SG-VP-17-23	10/4/2023 11:25:00 AM	Methane	9,900	ug/m³
23J0346-01	S54173.01	SG-VP-18-23	10/3/2023 11:30:00 AM	Methane	11,000,000	ug/m³
23J0346-02	S54173.02	SG-VP-19-23	10/3/2023 11:40:00 AM	Methane	<6,600	ug/m³
23J0346-06	S54173.06	SG-VP-20-23	10/3/2023 12:30:00 PM	Methane	<6,600	ug/m³
23J0346-03	S54173.03	SG-VP-21-23	10/3/2023 11:50:00 AM	Methane	3,000,000	ug/m³
23J0346-04	S54173.04	SG-VP-22-23	10/3/2023 11:55:00 AM	Methane	220,000,000	ug/m³
23J0346-05	S54173.05	SG-VP-23-23	10/3/2023 12:05:00 PM	Methane	2,600,000	ug/m³
23J0346-07	S54173.07	SG-VP-24-23	10/3/2023 12:50:00 PM	Methane	170,000,000	ug/m³
23J0346-08	S54173.08	SG-VP-25-23	10/3/2023 1:20:00 PM	Methane	<6,600	ug/m³

Residential / Non-Residential Volatilization to Indoor Air (VIAP) Screening Level (SL) (2020) for methane is 8,400,000 ug/m3.

Highlighted values indicate concentration exceeding VIAP SL.

Technical Memorandum

To: Larry Hines, Pure Muskegon LLC (Pure Muskegon)

From: Allen Prince, Barr Engineering Co. (Barr)

Subject: 2024 Supplemental Methane Investigation Results

Date: May 9, 2024

C: Trip Johnson & Steve Olson, Pure Muskegon

Mary Jane Rhoades & Scott Steiner, Rhoades McKee J. Scott Timmer, Gielow, Groom, Terpstra, & McEvoy

Chris Miron, Barr

At the request of Pure Muskegon, LLC (Pure Muskegon) and in consultation with Parkland Properties of Michigan (Parkland), Barr Engineering Co. (Barr) completed a supplemental methane and hydrogen sulfide investigation of a property located at 2400 Lakeshore Drive in the City of Muskegon, Michigan (Property). The purpose of this technical memorandum is to summarize the results of that investigation to accompany a Response Activity Plan (ResAP) which will describe "due care" obligations under Section 20107a of Part 201 of the 1994 Michigan PA 451, as amended (Act 451), for the vapor intrusion pathway associated with the redevelopment of the Property.

The investigation was conducted to: (a) assess the potential for advective flow of methane in the subsurface by measurement of subsurface pressures relative to atmospheric pressure; and (b) further define a vertical profile of soil gas quality for methane, hydrogen sulfide and certain other constituents at locations previously sampled by Environmental Resources Group, LLC (ERG) in October 2023 on behalf of Parkland. The investigation was also intended to assess whether and to what extent methane concentrations in soil gas may decrease as a result of active soil gas extraction and the quality of offgasses from a pilot-scale soil gas extraction test. More specifically, the investigation services included:

- Installation of soil gas wells near locations of wells previously installed by ERG to more fully
 define a vertical profile of soil gas quality for methane and other soil gas constituents;
- Sampling of soil gas for methane, hydrogen sulfide, oxygen, nitrogen, carbon monoxide, and carbon dioxide to develop a vertical profile of soil gas quality;
- Field measurement of differential pressures between soil gas and the atmosphere at the installed soil gas wells and accessible wells previously installed by ERG to assess the potential for advective (pressure-driven) flow of methane at the Property; and
- Installation of four (4) soil-gas extraction wells, extraction piping, soil gas wells and a soil gas extraction fan to allow for pilot-scale testing to assess methane concentrations in soil gas and the quality of off-gasses produced during active soil gas extraction.

Detailed results of the investigative activities are summarized in the sections below.

1 Soil Borings, Construction of Soil Gas Wells and Construction of Soil Gas Extraction Wells

A total of thirty-five (35) new soil gas wells were constructed on the Property to more fully develop a vertical profile of concentrations of methane, oxygen, carbon dioxide, carbon monoxide, and hydrogen

Date: May 9, 2024

Page: 2

sulfide as well as differential pressures between soil gas and the atmosphere. Four (4) soil gas extraction wells were also installed as part of a pilot-scale soil gas extraction test, and sampling of extracted soil gas for methane and volatile organic compounds (VOCs). Twenty-five (25) of the thirty-five (35) soil gas wells were installed as close as practical to the twenty-five (25) soil gas wells installed by ERG in October 2023. The remaining ten (10) soil gas wells were installed in nested clusters of two (2) wells, with shallow and intermediate depth intervals. The nested soil gas wells and four (4) soil gas extraction wells used for pilot-scale soil gas testing were installed in the west/central portion of the Property. Figure 1 shows the locations of the soil gas and soil gas extraction wells.

Soil Gas and Soil Gas Extraction Wells

A Barr geologist was on site from January 22 to January 24, 2024, to oversee construction of the soil gas and soil gas extraction wells. Soil borings for the soil gas wells were constructed at each soil gas well location using direct-push drilling techniques (Figure 1). Barr's field geologist logged soil stratigraphy and completed environmental field screening of each of the soil borings, including documentation of visual and olfactory observations as well as photoionization detector (PID) measurements. Soils encountered at the boring locations typically included sandy soils with gravel and silt, with sporadic organics and fill materials, including demolition debris and lime. Soil boring logs with stratigraphy, environmental screening and well construction details are included in Appendix A.

Soil gas wells were constructed at each soil boring location. Each well was constructed with a 6-inch long stainless steel screen and Teflon tubing, with a 2-inch protective polyvinyl chloride (PVC) cover and cap. The total depths of the wells ranged from 6 to 10 feet (ft) of blow ground surface (bgs). Twenty-five (25) soil gas wells were screened at 2 ft bgs. Ten (10) soil gas wells were screened as nested clusters of two (2) wells with shallow and intermediate screened intervals set at 2 ft and 5 ft bgs respectively. In every location where soil gas wells were constructed, an additional nested soil gas well was planned to be installed at a deep interval of approximately 8 – 10 ft bgs, just above a previously documented elevation of the groundwater table at the Property. The depth to groundwater at the time of well construction on the Property was shallower than expected at approximately 6 feet bgs, which precluded the installation of soil gas wells screens set at 8 – 10 ft bgs.

Soil borings for soil gas extraction wells were drilled at the locations shown in Figure 1 using hollow-steam auger drilling techniques. Barr's field geologist logged soil stratigraphy and completed environmental field screening of each of the soil borings, including documentation of visual and olfactory observations as well as PID measurements. Soils encountered at the boring locations typically included fine silty sands with some gravel and sporadic demolition debris.

Soil gas extraction wells were constructed at each boring location. Each well was constructed with a 2-inch diameter PVC casing, with a 2.5 ft long 10-slot PVC screen. The total depths of the wells were approximately 10 ft bgs and were screened from 2.5 - 5 ft bgs.

Soil Gas Extraction Pilot

A Barr geologist was on site to construct a pilot-scale soil gas extraction system from January 31 to February 1 in the western central portion of the Property (Figure 1). The pilot-scale soil gas extraction system was comprised of four (4) soil gas extraction wells and ten (10) soil gas wells, in nested clusters of two (2) wells. The four (4) soil gas extraction wells were installed in a spatial arrangement that approximated the locations of sub-slab depressurization suction points that would be installed below a

Date: May 9, 2024

Page: 3

typical residential home foundation proposed to be constructed on the Property by Parkland. The five (5) nested clustered of (2) soil gas wells were installed at variable distances from the soil gas extraction wells both inside and outside of the hypothetical footprint of a typical residential home foundation proposed to be constructed on the Property by Parkland. Figure 1 shows a general arrangement of the soil gas and soil gas extraction wells.

Each of the four (4) soil gas extraction wells was installed with a 2.5-ft open-ended piece of 2-inch PVC pipe above the ground surface. These pipes were manifolded together with 2-inch diameter PVC pipe to create two 2-inch PVC lines, which were further manifolded together in a single 4-inch diameter PVC pipe connected to a centrifugal fan. The fan was an OBAR model GBR-89, with an integrated variable-frequency drive (VFD). The fan was powered by existing 120-volt electrical power supply at the site. The soil gas extraction pilot was started on February 27 with the fan operating at a flowrate of approximately 150 cubic feet per minute (CFM) and 7 inches of water static pressure. The fan was increased to a rate of 200 CFM at 10 inches of water and left to run before the pilot-scale test was discontinued on March 1, 2024.

2 Soil-Gas Sampling and Analytical Results

Barr collected soil gas samples from thirty-one (31) soil gas wells from February 8 to February 14, 2024. At the time of sampling, groundwater had infiltrated the intermediate depths of four (4) of the five (5) nested soil gas wells installed for the soil gas extraction pilot, precluding the collecting of soil gas samples from these wells.

On February 27, prior to starting the soil gas extraction pilot, Barr attempted to collect samples from the nearby nested soil gas wells at intermediate depths. Only one (1) soil gas sample was collected from a soil gas well at the intermediate depth interval of five (5) ft because high groundwater conditions precluded collecting samples from the remaining four (4) soil gas wells installed at intermediate depths. Immediately following the pilot-scale test startup, two off-gas samples were taken from the pilot exhaust.

On March 1, prior to discontinuing the soil gas extraction pilot-scale test, Barr collected two off-gas samples from the fan exhaust. After shutting down the pilot-scale test, Barr collected soil gas samples from eight (8) wells installed for the pilot. At the time of sampling, groundwater elevations had reduced sufficiently to allow the collection of soil gas samples from three (3) wells at the intermediate depth interval of five (5) ft.

Forty (40) total soil gas samples were collected following soil gas sample collection methods recommended by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). Soil gas samples were field screened for methane, carbon dioxide and oxygen using a GEM™ 5000 landfill gas meter. Soil gas samples were also screened using a PID. Field measurements of differential pressure between the screened interval of the soil gas well and the atmosphere were taken from each installed soil gas well and accessible soil gas wells installed by ERG on the Property in October 2023 using an Alnor®

Date: May 9, 2024

Page: 4

micromanometer¹. Differential pressure measurements were screened against indoor risk values in ASTM E2993 – 16². Barometric pressure and temperature were also recorded.

All soil gas samples were analyzed for methane, oxygen, nitrogen, carbon dioxide, carbon monoxide and hydrogen sulfide. Samples of off-gasses from the soil gas extraction pilot were analyzed for the same constituents as the soil gas samples and were also analyzed for VOCs. Soil gas results were screened against Residential Volatilization to Indoor Air Pathway Screening Levels (VIAP SLs) developed by EGLE³. Field and analytical soil gas results are summarized in Table 1. Analytical off-gas results are summarized in Table 2. Differential pressure results are summarized in Table 3.

The soil gas and off-gas samples were shipped to Air Technology Laboratories, Inc. in City of Industry, California for analysis. All samples delivered to the lab were analyzed within the holding time of seven (7) days. Laboratory analytical reports for the soil gas and off-gas samples are included in Appendix B.

2.1 Methane, Hydrogen Sulfide and Other Atmospheric Gas Results in Soil Gas

Soil gas samples were analyzed for methane, oxygen, nitrogen, carbon dioxide, carbon monoxide and hydrogen sulfide. Every sample was below the detection limit for hydrogen sulfide. Methane was detected in 17 of the 40 soil gas samples collected as part of this scope of work. The remaining 23 samples did not contain detectable concentrations of methane. Methane exceeded the residential VIAP SLs in five samples: VP-3-24, VP-6-24, VP Pilot N (5 ft), and from VP Pilot C (5 ft) during two different sampling events. Concentrations of oxygen, nitrogen and carbon dioxide approximated typical atmospheric concentrations in soil gas samples taken from soil gas wells at 2 ft bgs. In soil gas samples taken from soil gas wells at 5 ft bgs that had detections of methane, oxygen concentrations were markedly less than typical atmospheric conditions at 1 - 12 %(v/v) and carbon dioxide concentrations were elevated at 2 - 12 %(v/v), suggesting an anoxic environment which is consistent with the presence/generation of methane. Figure 2 shows the soil gas methane sampling results with exceedances highlighted. Table 1 summarizes the analytical results from soil gas sampling.

The nature of the residential and non-residential structures proposed to be constructed on the Property by Parkland would preclude the use of residential VIAP SLs as site-specific volatilization to indoor air criteria (SSVIAC) for activities related to "due care" obligations under Section 20107a of Part 201. However, existing soil gas data developed in October 2023 indicates methane concentrations significantly in excess of the residential VIAP SL for methane. A SSVIAC for methane, if developed for the Property, would likely not be materially less stringent than the VIAP SL, in the context of the methane concentrations that have been observed in the subsurface. As a result, the current residential VIAP SL for methane was used to screen soil gas methane data from the Property.

Soil gas wells were constructed with caps on the soil gas well tubing to allow pressure in the soil gas wells to accumulate prior to the collection of field measurements. At each soil gas well, differential pressure field measurements were collected prior to other field measurements.

American Society of Testing and Materials International. E2993 – 16: Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone. May 2016.

Michigan Department of Environment, Great Lakes and Energy. Guidance Document for the Vapor Intrusion Pathway. May 2013. Appendix D.1 – Revised February 2024.

Date: May 9, 2024

Page: 5

2.2 Methane, Hydrogen Sulfide and VOC Results in Soil Gas Extraction Pilot-Scale Testing Off-Gases

Off-gases from the soil gas extraction pilot-scale test were analyzed for methane, oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen sulfide and VOCs. The off-gas samples taken immediately after startup of the soil gas extraction pilot-scale test were below the detection limit for hydrogen sulfide. Methane was detected in the off-gases at a concentration of 0.023 %(v/v). The VOCs carbon disulfide, acetone and 2-butanone (i.e., methyl ethyl ketone) were also detected in the off-gases.

The off-gas samples taken immediately prior to discontinuation of the soil gas extraction pilot-scale test were below the detection limit for hydrogen sulfide. Methane was detected in the final off-gas sample at a concentration of 0.013 % (v/v); approximately 56% of the concentration in the initial off-gas sample. The VOCs toluene and carbon disulfide were also detected in the off-gases. Table 2 shows the analytical results from the pilot-scale testing off-gas sampling.

The off-gas sampling results were used to develop a preliminary estimate of air emissions for the soil gas extraction activities. R 336.1290 (i.e., "Rule 290") of the administrative rules promulgated pursuant to Part 55 (Air Pollution Control) of Act 451, establishes threshold limits for air emissions of constituents under which the emitting system is exempt from the requirement to obtain an air quality permit to install. Estimated uncontrolled emissions rates for detected constituents and operational data are presented in Appendix C.

Based on the analysis in Appendix C, the exhaust from the soil gas extraction system was exempt from the requirement to obtain an air quality permit to install at the time of sampling.

2.3 Field Sampling Results

Field-collected oxygen and carbon dioxide data generally agree with laboratory analytical data for soil gas samples. Field-collected methane data reflect analytical data much more accurately for higher methane concentrations in soil gas samples, such as those collected from VP-3-24 and VP-6-24. This suggests that the methane values for soil gas samples from the other wells were too close to the GEM[™] 5000s detection limit to effectively distinguish samples from noise. Table 1 summarizes collected field data.

Differential pressure was collected at the time of sampling, prior to sampling of each soil gas well. Two additional field events were conducted on March 14 and March 18 to measure differential pressures in the 35 installed soil gas wells and accessible soil gas wells installed by ERG on the Property in October 2023. The absolute values of all differential pressure values collected are significantly below the ASTM E2993-16⁴ risk threshold value of 2 inches water, including from wells previously installed by ERG. The highest observed differential pressure was 0.353 from VP-6-23 (5 ft). Approximately 47% of the measured differential pressure value were negative, which is suggestive of air flowing from the atmosphere into the soil gas. Approximately 53% of the measured differential pressure values were positive, which is suggestive of soil gas flowing from the soil to the atmosphere. The remaining differential pressure values were measured as 0. Table 3 summarizes differential pressure data.

⁴ Ibid

Date: May 9, 2024

Page: 6

3 Conclusions and Recommendations

Barr conducted the supplemental methane and hydrogen sulfide investigation at the Property to further define a vertical profile of soil gas quality for methane, hydrogen sulfide and other constituents at locations previously sampled in October 2023. The investigation also assessed whether and to what extent methane concentrations in soil gas decreased as a result of active soil gas extraction and the quality of off-gasses from a soil gas extraction pilot test. The findings and conclusions from the above sections are summarized below.

3.1 Methane, Hydrogen Sulfide and Other Atmospheric Gases Results in Soil Gas

- Hydrogen sulfide was not detected in soil gas in any of the samples collected as part of this supplemental investigation.
- Methane concentrations in soil gas at 2 ft bgs were below the residential VIAP SLs except for two samples from VP-3-24 and VP-6-24, both located near the eastern shore of the Property.
- At every nested soil gas well sampled, methane concentrations in the soil gas at 2 ft bgs were less than methane concentrations in soil gas at 5 ft bgs.
- The combined concentrations of methane and carbon dioxide in soil gas wells at 5 ft bgs are less than 90% and therefore do not suggest the presence of "undiluted" biogas as defined in the ASTM 2993 -16⁵ risk assessment framework.
- Methane in soil gas decreased as a result of the soil gas extraction pilot in soil gas wells installed at 5 ft bgs.
- Methane in soil gas increased slightly between some samples taken before starting the pilot-scale soil gas extraction test and samples taken after the test in soil gas wells installed at 2 ft bgs.
 Methane concentrations in these samples remain low and significantly below the residential VIAP SL for methane.
- All differential pressures collected were substantially below the ASTM E2993-16 risk threshold value of 2 inches water. Negative differential pressure values are attributed to the variable barometric pressure between measuring events, variable changes in temperature through the investigation, and spring snow melt conditions.

3.2 Methane, Hydrogen Sulfide and VOC Results in Soil Gas Extraction Pilot-Scale Test Off-Gases

- Hydrogen sulfide was not detected in the off-gases from pilot-scale soil gas extraction.
- Methane in the pilot-scale test off-gases decreased over the course of the test.
- All VOCs in the pilot-scale test off-gases decreased over the course of the test, except for toluene.
- The off-gases from the pilot-scale soil gas extraction system was exempt from the requirement to obtain an air quality permit to install at the time of sampling. Estimated VOC emission rates from the pilot-scale testing, extrapolated to a full month of operation, are 0.5 lb/month, well below the R290 exemption emissions threshold for non-carcinogenic compounds of 1,000 lb/month.
- The off-gases from the pilot-scale test is likely representative of off-gases that would be expected
 from a typical sub-slab depressurization system installed underlying a structure in this area of the
 Property as part of Parkland's proposed redevelopment of the Property. Off-gases from the

⁵ Ibid

To: Larry Hines, Pure Muskegon LLC (Pure Muskegon) From: Allen Prince, Barr Engineering Co. (Barr)

Subject: 2024 Supplemental Methane Investigation Results Date: May 9, 2024

Page: 7

proposed sub-slab depressurization systems are considered likely to constitute R290 exempt sources of air emissions, as a result.

Attachments:

Table 1 – Summary of Soil Gas Field and Analytical Data

Table 2 – Summary of Soil Gas Extraction Pilot Off-Gas Results

Table 3 – Summary of Differential Pressure Results

Figure 1 – Soil Gas and Pilot Extraction Well Locations

Figure 2 – Soil Gas Methane Results

Appendix A - Soil Boring Logs

Appendix B – Lab Data

Appendix C – Preliminary Air Emissions Estimate

Table 1 Summary of Soil Gas Field and Analytical Data 2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan Pure Muskegon, LLC

Footnotes
N Sample Type: Normal

U The analyte was analyzed for, but was not detected.

-- Not analyzed/Not available.

			L	ocation	VP Pilot 15 E	VP Pilot 15 E	VP Pilot 20 N	VP Pilot C	VP Pilot C	VP Pilot C			
				Date	2/13/2024	3/01/2024	2/13/2024	2/13/2024	3/01/2024	3/01/2024	2/14/2024	2/27/2024	3/01/2024
				Depth	2 ft	2 ft	5 ft	2 ft	5 ft	2 ft	2 ft	5 ft	5 ft
			Samr	le Type		N	N	l N	N	N	N	N	N
	1		Residential	те турс					.,	.,			
	Total or	Analysis	VIAP										
Parameter	Dissolved	Location	Screening	Units									
	2.000.100		Level										
General Parameters													
Carbon dioxide (CO2)	NA	Lab		% v/v	0.22	0.23	2.0	0.40	1.3	0.40	0.18	12	9.6
Carbon monoxide	NA	Lab		% v/v	< 0.0027 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0024 U	< 0.0027 U	< 0.0024 U	< 0.0027 U	< 0.0024 U
Methane	NA	Lab	1.3	% v/v	< 0.0027 U	< 0.0025 U	0.010	< 0.0025 U	< 0.0024 U	< 0.0027 U	< 0.0024 U	76	61
Nitrogen, gas (N2)	NA	Lab		% v/v	79	79	86	79	78	79	79	11	24
Oxygen + Argon	NA	Lab		% v/v	20	21	12	21	20	21	21	1.4	4.8
Field Parameters													
Ambient temperature	NA	Field		deg F	35	47	35	35	47	47	34	62	47
Barom etric pressure	NA	Field		in Hg		30.15	29.36	29.36	30.15	30.15			30.15
Carbon Dioxide (CO2), background	NA	Field		%	0.1	0.1	0.1	0.1	0	0	0.1	0.1	
Carbon Dioxide (CO2), in hose	NA	Field		%	0.4	0.3	2.8	0.7	2.9	0.5	0.3	10.0	11.4
Methane (CH4), background	NA	Field		%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
Methane (CH4), in hose	NA	Field		%	0.1	0.1	0.4	0.1	0.1	0.1	0.1	39.0	68.4
Oxygen (O2), background	NA	Field		%	21.1	20.6	21.0		20.9	20.5	20.4	20.5	20.5
Oxygen (O2), in hose	NA	Field		%	20.5	20.7	12.4	20.5	18.5	20.3	20.3	10.7	2.2
PID, background	NA	Field		ppm	0	0	0	0	0	0	0	0	0
PID, in hose	NA	Field		ppm	0	0	0	0	0	0	0	0	0
Semivolatile Organic Compounds													
Hydrogen sulfide	NA	Lab		ppmv	< 0.53 U	< 0.51 U	< 0.49 U	< 0.51 U	< 0.48 U	< 0.53 U	< 0.48 U	< 0.55 U	< 0.48 U

Table 1 Summary of Soil Gas Field and Analytical Data 2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan Pure Muskegon, LLC

			L	ocation	VP Pilot C	VP Pilot N	VP Pilot N	VP Pilot N	VP Pilot S	VP Pilot S	VP-1-24	VP-2-24	VP-3-24	VP-4-24	VP-5-24	VP-6-24
				Date	3/01/2024	2/13/2024	3/01/2024	3/01/2024	2/14/2024	3/01/2024	2/08/2024	2/08/2024	2/08/2024	2/08/2024	2/08/2024	2/08/2024
				Depth	2 ft	2 ft	5 ft	2 ft								
			_													
				le Type	N	N	N	N	N	N	N	N	N	N	N	N
	Total or	Analysis	Residential VIAP													
Parameter	Dissolved	Location	Screening	Units												
	Dissolved	Location	Level													
General Parameters			LOVOI													
Carbon dioxide (CO2)	NA	Lab		% v/v	0.16	0.52	7.6	0.099	1.7	0.12	2.6	1.2	9.0	0.63	1.3	22
Carbon monoxide	NA	Lab		% v/v	< 0.0025 U	< 0.0027 U	< 0.0028 U	< 0.0025 U	< 0.0022 U	< 0.0023 U	< 0.0024 U	< 0.0027 U	< 0.0024 U	< 0.0027 U	< 0.0024 U	< 0.0025 U
Methane	NA	Lab	1.3	% v/v	0.0078	< 0.0027 U	22	0.0028	< 0.0022 U	< 0.0023 U	< 0.0024 U	0.011	12	1.1	1.1	25
Nitrogen, gas (N2)	NA	Lab		% v/v	79	79	63	79	82	79	85	81	77	81	78	52
Oxygen + Argon	NA	Lab		% v/v	20	20	7.6	21	17	21	12	18	2.0	17	20	< 1.3 U
Field Parameters																
Ambient temperature	NA	Field		deg F			47	47	34	47		40	40	46	53	
Barometric pressure	NA	Field		in Hg			30.15	30.15	29.61	30.15	29.26		29.26	29.25		29.18
Carbon Dioxide (CO2), background	NA	Field		%		0.1			0.1	0	0.2	0.2	0.2	0.1		0.1
Carbon Dioxide (CO2), in hose	NA	Field		%		0.3	1.1	0.2	1.8	0.1	4.3	1.8	10.4	1.0	1.4	22.6
Methane (CH4), background	NA	Field		%		0.1	0.1	0	0.1	0	0.1	0.1	0.1	0.1	0.1	0.1
Methane (CH4), in hose	NA	Field		%		0.1	0.4	0	0.1	0.1	0.1	0.1	12.8	1.3	0.9	25.3
Oxygen (O2), background	NA	Field		%		20.5	20.5	20.5	20.4	20.8	20.5	20.6	21.0	21.1	21.2	21.2
Oxygen (O2), in hose	NA	Field		%		19.5	19.6	20.3	17.0	20.8	9.0	17.1	0.5	13.3	19.9	0.3
PID, background	NA	Field		ppm		0	0	0	0	0	0	0	0	0	0	0
PID, in hose	NA	Field		ppm		0	0	0	0	0	0.1	0	0	0	0	0.4
Semivolatile Organic Compounds																
Hydrogen sulfide	NA	Lab		ppmv	< 0.51 U	< 0.55 U	< 0.56 U	< 0.51 U	< 0.44 U	< 0.46 U	< 0.48 U	< 0.53 U	< 0.48 U	< 0.53 U	< 0.48 U	< 0.51 U

Table 1
Summary of Soil Gas Field and Analytical Data
2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan
Pure Muskegon, LLC

			Lo	Location	VP-7-24	VP-8-24	VP-9-24	VP-10-24	VP-11-24	VP-12-24	VP-13-24	VP-14-24	VP-15-24	VP-16-24	VP-17-24	VP-18-24
				Date	2/08/2024	2/08/2024	2/09/2024	2/09/2024	2/09/2024	2/09/2024	2/09/2024	2/09/2024	2/13/2024	2/09/2024	2/09/2024	2/12/2024
				Depth	2#	2 ft										
			Sampl	Sample Type	z	z	z	z	z	z	z	z	z	z	z	z
			Residential													
Parameter	Total or	Analysis	VIAP	Units												
		Location	Level													
General Parameters																
Carbon dioxide (CO2)	¥	Lab		۸/۸ %	2.3	1.4	9.2	6.9	0.32	3.0	0.094	0.41	< 0.024 U	< 0.025 U	4.4	09.0
Carbon monoxide	Ā	Lab		۸/۸ %	< 0.0025 U	< 0.0025 U	< 0.0027 U	< 0.0027 U	< 0.0026 U	< 0.0025 U	< 0.0025 U	< 0.0028 U	< 0.0024 U	< 0.0025 U	< 0.0027 U	< 0.0024 U
Methane	AN	Lab	1.3	٨/٨ %	< 0.0025 U	0.0060	1.1	< 0.0027 U	< 0.0026 U	< 0.0025 U	0.0059	< 0.0028 U	0.037	< 0.0025 U	< 0.0027 U	0.0045
Nitrogen, gas (N2)	NA	Lab		۸/۸ %	78	79	88	83	79	80	79	79	79	62	84	79
Oxygen + Argon	ΑN	Lab		% v/v	19	20	1.6	9.5	21	17	21	21	21	21	12	20
Field Parameters																
Ambient temperature	¥	Field		deg F	53	56	43	43	46	46	46	46	34	48	47	31
Barometric pressure	¥	Field		in Hg	29.23	29.18	29.12	29.15	29.15	29.14	29.16	29.14	29.35	29.13	29.13	29.30
Carbon Dioxide (CO2), background	ΝA	Field		%	0.1	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Carbon Dioxide (CO2), in hose	¥	Field		%	2.5	1.7	9.5	7.5	0.4	3.1	0.2	0.5	0.2	0.1	4.7	6.0
Methane (CH4), background	AA	Field		%	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Methane (CH4), in hose	ΝΑ	Field		%	0.1	0.1	1.3	0.1	0.1	0.1	0.1	0.1	0.5	0.2	0.1	0.1
Oxygen (O2), background	ΑN	Field		%	20.9	-	20.8	20.8	21.6	21.5	20.8	21.1	20.5	21.3	21.0	19.6
Oxygen (O2), in hose	ΑN	Field		%	18.7	19.4	0.7	9.4	21.5	16.8	21.1	21.5	17.6	20.9	11.4	18.6
PID, background	ΑN	Field		mdd	0	0	0	0	0	0	0	0	0	0	0	0
PID, in hose	Ϋ́	Field		mdd	0	0	0	0.2	0	0	0	0	0	0.1	0	0
Semivolatile Organic Compounds																
Hydrogen sulfide	ΑN	Lab		ppmv	< 0.49 U	< 0.49 U	< 0.53 U	< 0.53 U	< 0.52 U	< 0.49 U	< 0.51 U	< 0.56 U	< 0.48 U	< 0.51 U	< 0.53 U	< 0.48 U

Table 1 Summary of Soil Gas Field and Analytical Data 2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan Pure Muskegon, LLC

			L	ocation	VP-19-24	VP-20-24	VP-21-24	VP-22-24	VP-23-24	VP-24-24	VP-25-24
				Date	2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024	2/12/2024
				Depth	2 ft						
			Samp	le Type	N	N	N	N	N	N	N
Parameter	Total or Dissolved	Analysis Location	Residential VIAP Screening Level	Units							
General Parameters											
Carbon dioxide (CO2)	NA	Lab		% v/v	0.083	< 0.024 U	0.43	2.9	2.0	1.3	0.40
Carbon monoxide	NA	Lab		% v/v	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0025 U	< 0.0024 U	< 0.0025 U
Methane	NA	Lab	1.3	% v/v	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0025 U	< 0.0024 U	0.0028
Nitrogen, gas (N2)	NA	Lab		% v/v	81	80	88	83	78	78	79
Oxygen + Argon	NA	Lab		% v/v	19	20	12	14	20	20	21
Field Parameters											
Ambient temperature	NA	Field		deg F		32	34	34	36	36	35
Barometric pressure	NA	Field		in Hg		29.26	29.26	29.26	29.26	29.26	29.26
Carbon Dioxide (CO2), background	NA	Field		%	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Carbon Dioxide (CO2), in hose	NA	Field		%	0.3	0.2	0.6	3.3	2.0	1.5	0.6
Methane (CH4), background	NA	Field		%	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Methane (CH4), in hose	NA	Field		%	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Oxygen (O2), background	NA	Field		%	19.8	21.1	21.2	21.1	21.4	21.5	20.8
Oxygen (O2), in hose	NA.	Field		%	16.1	20.1	10.6	14.3	19.9	20.5	20.5
PID, background	NA.	Field		ppm	0	0	0.1	0	0	0	0
PID, in hose	NA.	Field		ppm	0	0	0	0	0	0	0
Semivolatile Organic Compounds											
Hydrogen sulfide	NA	Lab		ppmv	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.51 U	< 0.48 U	< 0.51 U

Summary of Soil Gas Extraction Pilot Off-Gas Results 2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan Pure Muskegon, LLC

Footnotes
N Sample Type: Normal

U The analyte was analyzed for, but was not detected.

-- Not analyzed/Not available.

	Location	Pilot Effluent	Pilot Effluent	Pilot Effluent	Pilot Effluent
	ontainer	#1	#2	#1	#2
	Date	2/27/2024	2/27/2024	3/01/2024	3/01/2024
Sam	ple Type	N	N	N	N
Parameter	Units				
General Parameters					
Carbon dioxide (CO2)	% v/v		0.21		0.085
Carbon monoxide	% v/v		< 0.0025 U		< 0.0022 U
Methane Nitrogen, gas (N2)	% v/v % v/v	0.023	0.023 79	0.013	0.012 79
Oxygen + Argon	% v/v		21		21
Semivolatile Organic Compounds	70 V/V		21		21
Hydrogen sulfide	ppmv		< 0.49 U		< 0.44 U
Volatile Organic Compounds	pp		0.100		70.110
1,1,1-Trichloroethane	ppbv	< 2.4 U		< 2.5 U	
1,1,2,2-Tetrachloroethane	ppbv	< 2.4 U		< 2.5 U	
1,1,2-Trichloroethane	ppbv	< 2.4 U		< 2.5 U	
1,1-Dichloroethane	ppbv	< 2.4 U		< 2.5 U	
1,1-Dichloroethylene	ppbv	< 2.4 U		< 2.5 U	
1,2,4-Trichlorobenzene	ppbv	< 4.8 U		< 5.1 U	
1,2,4-Trimethylbenzene	ppbv	< 2.4 U		< 2.5 U	
1,2-Dibromoethane (EDB)	ppbv	< 2.4 U		< 2.5 U	
1,2-Dichlorobenzene	ppbv	< 2.4 U		< 2.5 U	
1,2-Dichloroethane	ppbv	< 2.4 U		< 2.5 U	
1,2-Dichloroethylene, cis	ppbv	< 2.4 U		< 2.5 U	
1,2-Dichloroethylene, trans	ppbv	< 2.4 U		< 2.5 U < 2.5 U	
1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane (Freon 114)	ppbv ppbv	< 2.4 U < 2.4 U		< 2.5 U	
1.3.5-Trimethylbenzene	ppbv	< 2.4 U		< 2.5 U	
1,3-Dichlorobenzene	ppbv	< 2.4 U		< 2.5 U	
1,3-Dichloropropene, cis	ppbv	< 2.4 U		< 2.5 U	
1,3-Dichloropropene, trans	ppbv	< 4.8 U		< 5.1 U	
1,4-Dichlorobenzene	ppbv	< 2.4 U		< 2.5 U	
2-Hexanone	ppbv	< 2.4 U		< 2.5 U	
4-Ethyltoluene	ppbv	< 2.4 U		< 2.5 U	
Acetone	ppbv	65		< 13 U	
Benzene	ppbv	< 2.4 U		< 2.5 U	
Benzyl chloride	ppbv	< 2.4 U		< 2.5 U	
Bromodichloromethane	ppbv	< 2.4 U		< 2.5 U	
Bromoform	ppbv	< 2.4 U		< 2.5 U	
Bromomethane	ppbv	< 2.4 U		< 2.5 U	
Carbon disulfide Carbon tetrachloride	ppbv	13 < 2.4 U		4.3 < 2.5 U	
Chlorobenzene	ppbv ppbv	< 2.4 U		< 2.5 U	
Chlorodibromomethane	ppbv	< 2.4 U		< 2.5 U	
Chloroethane	ppbv	< 12 U		< 13 U	
Chloroform	ppbv	< 2.4 U		< 2.5 U	
Chloromethane	ppbv	< 2.4 U		< 2.5 U	
Dichlorodifluoromethane (Freon-12)	ppbv	< 2.4 U		< 2.5 U	
Ethyl benzene	ppbv	< 2.4 U		< 2.5 U	
Hexachlorobutadiene	ppbv	< 2.4 U		< 2.5 U	
Methyl ethyl ketone (2-butanone)	ppbv	220		< 13 U	
Methyl isobutyl ketone (MIBK)	ppbv	< 2.4 U		< 2.5 U	
Methyl tertiary butyl ether (MTBE)	ppbv	< 2.4 U		< 2.5 U	
Methylene chloride	ppbv	< 2.4 U		< 2.5 U	
Styrene	ppbv	< 2.4 U		< 2.5 U	
Tetrachloroethylene	ppbv	< 2.4 U		< 2.5 U	
Toluene	ppbv	< 2.4 U		7.0	
Trichloroethylene (TCE) Trichlorofluoromethane (Freon-11)	ppbv ppbv	< 2.4 U < 2.4 U		< 2.5 U < 2.5 U	
Trichlorotrifluoroethane (Freon 113)	ppbv	< 2.4 U		< 2.5 U	
Vinyl acetate	ppbv	< 2.4 U		< 2.5 U	
Vinyl chloride	ppbv	< 2.4 U		< 2.5 U	
Xylene, m & p	ppbv	< 4.8 U		< 5.1 U	
Xylene, o	ppbv	< 2.4 U		< 2.5 U	

Summary of Differential Pressure Results 2024 Supplemental Methane Investigation - 2400 Lakeshore Drive, Muskegon, Michigan Pure Muskegon, LLC

Footnotes
N Sample Type: Normal U The analyte was analyzed for, but was not

detected.

NM - Not measured / Unable to measure

-- Not measured

	Parameter		Differential pressure	Barometric pressure	Ambient temperature
	Analysis Lo	ocation	Field	Field	Field
		Units	in H2O	in Hg	deg F
Location	Date	Depth		•	
VP-1-24	2/8/2024	2 ft	0.006	29.26	
VP-2-24	2/8/2024	2 ft	-0.004		40
ot VP-3-23	2/8/2024	5 ft	0.023		
VP-3-24	2/8/2024	2 ft	0.009	29.26	40
VP-4-24	2/8/2024	2 ft	0.002	29.25	46
VP-5-23	2/8/2024	5 ft	0.346		
VP-5-24	2/8/2024	2 ft	0.001		53
VP-6-23	2/8/2024	5 ft	0.353		
VP-6-24	2/8/2024	2 ft	0.016	29.18	
VP-7-23	2/8/2024	5 ft	0.001		
VP-7-24	2/8/2024	2 ft	0.002	29.23	53
VP-8-23	2/8/2024	5 ft	0.340		
VP-8-24	2/8/2024	2 ft	0.292	29.18	56
VP-9-24	2/9/2024	2 ft	0.006	29.12	43
VP-10-23	2/9/2024	5 ft	NM	NM	NM
VP-10-24	2/9/2024	2 ft	-0.004	29.15	43
VP-11-23	2/9/2024	5 ft	NM	NM	NM
VP-11-24	2/9/2024	2 ft	-0.001	29.15	46
VP-12-23	2/9/2024	5 ft	0.004		
VP-12-24	2/9/2024	2 ft	-0.006	29.14	46
VP-13-23 VP-13-24	2/9/2024	5 ft	0.010		
VP-13-24 VP-14-23	2/9/2024	2 ft 5 ft	-0.002 0.001	29.16	46
VP-14-23	2/9/2024	2 ft	-0.002	29.14	46
VP-15-23	2/13/2024	5 ft	NM	29.14 NM	NM
VP-15-24	2/13/2024	2 ft	0.005	29.35	34
VP-16-24	2/9/2024	2 ft	-0.001	29.13	48
VP-17-23	2/9/2024	5 ft	-0.003		
VP-17-24	2/9/2024	2 ft	0.008	29.13	47
VP-18-23	2/12/2024	5 ft	0.028		
VP-18-24	2/12/2024	2 ft	-0.001	29.30	31
VP-19-23	2/12/2024	5 ft	NM	NM	NM
VP-19-24	2/12/2024	2 ft	-0.003		
VP-20-23	2/12/2024	5 ft	-0.006		
VP-20-24	2/12/2024	2 ft	0.004	29.26	32
VP-21-23	2/12/2024	5 ft	-0.009		
VP-21-24	2/12/2024	2 ft	-0.018	29.26	34
VP-22-23	2/12/2024	5 ft	NM		
VP-22-24	2/12/2024	2 ft	-0.002	29.26	34
VP-23-23	2/12/2024	5 ft	NM	NM	NM
VP-23-24	2/12/2024	2 ft	-0.002	29.26	36
VP-24-23	2/12/2024	5 ft	0.009		
VP-24-24	2/12/2024	2 ft	-0.002	29.26	36
VP-25-23	2/12/2024	5 ft	NM	NM oo oo	NM
VP-25-24	2/12/2024	2 ft	-0.002	29.26	35
VP Pilot 15 E	2/13/2024 3/1/2024	2 ft	-0.003		35
VP Pilot 15 E VP Pilot 20 N		2 ft	0.008	30.15	47 35
VP PILOT 20 N	2/13/2024	2 ft 5 ft	-0.001 -0.084	29.36	35 35
VP Pilot 20 N	3/1/2024	2 ft	-0.084 0.001	29.36 30.15	35 47
VP Pilot 20 N	3/1/2024	≥ It 5 ft	0.001	30.15	47
VP Pilot C	2/14/2024	2 ft	-0.002	30.15	34
VP Pilot C	2/14/2024	2 It 5 ft	0.045		62
VP Pilot C	3/1/2024	5 ft	0.213	30.15	47
VP Pilot N	2/13/2024	2 ft	-0.006		
VP Pilot N	3/1/2024	5 ft	-0.068	30.15	47
VP Pilot N	3/1/2024	2 ft	-0.004	30.15	47
VP Pilot S	2/14/2024	2 ft	NM	29.61	34
VP Pilot S	3/1/2024	2 ft	0.002	30.15	47
					-

LOG OF GEOPROBE Pilot Study Extraction Wells (4)

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Completed: 1/24/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT

LOG OF GEOPROBE SG Well VP Pilot C

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Coord	dinate n:	s:				Completion Depth: 10.0 ft		
	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	USCS	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation, feet
-0.0 - -			PID:0.0 D/O/S:None/ None/ None G/S/F:15%/ 70%/ 15%	SP		POORLY GRADED SAND (SP): fine grained; brown; dry; debris (brick gravel).	-Bentonite 0 - 1.4'	
2.5-		1	PID:0.0 D/O/S:None/ None/ None G/S/F:0%/ 100%/ 0%	SP		POORLY GRADED SAND (SP): fine to medium grained; tan; dry.	Sandpack 1.4 - 2.2' 6" stainless steel soil gas screen set at 2' bgs. -Bentonite 2' - 4.2'	
-			PID:0.0 D/O/S:None/ None/ None G/S/F:20%/ 65%/ 15%			SILTY SAND (SM): fine grained; gray dark brown; dry; debris.	-Sand Pack 4.2 - 5'	
5.0- - - - 7.5-		1 g Starte		SM		Wet; water in open borehole @ 6.4' bgs.	6" stainless steel soil gas screen set at 5" bgs.	
10.0- - - 12.5-						End of geoprobe 10.0 feet		
- - -15.0			ed: 1/24/24			Remarks: Due to the proximity of the soil gas wells within	the nilot test area one horing was come	leto

Date Boring Started:
Date Boring Complete
Logged By:
Drilling Contractor:
Drill Rig: 1/24/24 Date Boring Completed: 1/24/24 **AWB**

Job Site Services Geoprobe 7822DT Remarks: Due to the proximity of the soil gas wells within the pilot test area one boring was completed to 10' bgs to determine lithology. Subsequent borings were completed to 5' to confirm lithology and install soil gas wells. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over each gas well. A driveway marker was installed to mark the location. See the Investigation. Location Figure for location detail.

PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected, G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

LOG OF GEOPROBE SG Well VP Pilot E 15'

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Completed: 1/24/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT to 10' bgs to determine lithology. Subsequent borings were completed to 5' to confirm lithology and install soil gas wells. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over each gas well. A driveway marker was installed to mark the location. See the Investigation. Location Figure for location detail.

LOG OF GEOPROBE SG Well VP Pilot N

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Started: 1/24/24 Date Boring Completed: 1/24/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT to 10' bgs to determine lithology. Subsequent borings were completed to 5' to confirm lithology and install soil gas wells. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over each gas well. A driveway marker was installed to mark the location. See the Investigation. Location Figure for location detail.

LOG OF GEOPROBE SG Well VP Pilot N 20'

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Date Boring Started: 1/24/24 Date Boring Completed: 1/24/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Due to the proximity of the soil gas wells within the pilot test area one boring was completed to 10' bgs to determine lithology. Subsequent borings were completed to 5' to confirm lithology and install soil gas wells. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over each gas well. A driveway marker was installed to mark the location. See the Investigation. Location Figure for location detail.

LOG OF GEOPROBE SG Well VP Pilot

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Started: 1/24/24 Date Boring Completed: 1/24/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT to 10' bgs to determine lithology. Subsequent borings were completed to 5' to confirm lithology and install soil gas wells. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over each gas well. A driveway marker was installed to mark the location. See the Investigation. Location Figure for location detail.

LOG OF GEOPROBE VP-10-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Logged By:

Drill Rig:

Drilling Contractor:

AWB

Job Site Services

Geoprobe 7822DT

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

location detail.

PID = Headspace: D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

LOG OF GEOPROBE VP-11-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Started: 1/22/24 Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-12-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

Barr Engineering Co. 3033 Orchard Vista Drive SE, Suite 200 Grand Rapids, MI 49546 BARR Grand Hapids, IVII 49040 Telephone: 616-512-7000

LOG OF GEOPROBE VP-1-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation, feet
-0.0			D/O/S:None/ None/ None G/S/F:0%/ 100%/ 0%	SP		POORLY GRADED SAND (SP): light brown; dry.	-Bentonite 0-1.4'	
- - 2.5-	-	1	D/O/S:None/ None G/S/F:40%/ 60%/ 0%	sw		WELL GRADED SAND (SW): fine to medium grained; brown; dry; gravel, wood.	-Sandpack interval 1.4' - 2.2' 6" stainless steel soil gas screen set at 2' bgs.	
-			D/O/S:None/ None/ None G/S/F:10%/ 90%/ 0%	SP		POORLY GRADED SAND (SP): fine to medium grained; dark brown; dry; trace gravel.		
-			D/O/S:None/ None/ None G/S/F:0%/ 100%/ 0%	SP		POORLY GRADED SAND (SP): fine to medium grained; tan; dry to moist.		
5.0¥	-		D/O/S:None/ None/ None G/S/F:20%/ 70%/ 10%	SP		POORLY GRADED SAND (SP): fine grained; dark brown; wet; gravel, trace organics.		
-15.0-Date		2	D/O/S:None/ None/ None G/S/F:20%/ 80%/ 0%	SP		POORLY GRADED SAND (SP): fine to medium grained; dark brown; wet; little gravel, brick, wood.		
10.0-	-					End of geoprobe 10.0 feet		
- 12.5- - - -								
-15.0•		g Starte	ed: 1/22/24			Remarks: Soil boring was completed to collect lithology	information and then abandoned with her	tonito

Date Boring Started:
Date Boring Completed:
Logged By:
Drilling Contractor:
Drill Rig: 1/22/24 AWB

Job Site Services Geoprobe 7822DT

chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

Barr Engineering Co. 3033 Orchard Vista Drive SE, Suite 200 Grand Rapids, MI 49546 BARR Granu napius, ivii 400.0 Telephone: 616-512-7000

LOG OF GEOPROBE VP-13-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Drilling Method: Location: 2400 Lakeshore Drive, Muskegon, MI, 49441

Sampling Method: Macrocore

Geoprobe

Date Boring Completed: 1/23/24 Logged By: AWB

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-14-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: AWB

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-15-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Logged By:

Drill Rig:

Drilling Contractor:

AWB

Job Site Services

Geoprobe 7822DT

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

location detail.

PID = Headspace: D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

LOG OF GEOPROBE VP-16-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe

Sampling Method: Macrocore

Completion Depth: 6.0 ft

Elevation, feet ample Type Recovery Graphic Log Depth, feet Sample No. WELL OR PIEZOMETER USCS **ENVIRONMENTAL** LITHOLOGIC DESCRIPTION CONSTRUCTION DATA **DETAIL** DEBRIS: brown; dry; brick, wood, concrete. 0.5 -Bentonite 0-1.4' C. USERSUPRIDOCUMENTS ALLEN PRINCEIPURE MUSKEGON GINT LOGS IPUREMUSKEGON SGWELLINTSALL, GPJ BARRLIBRARY 1.GLB ENVIRO LOG BARR TEMPLATE. GD7 1.0 1.5 Sandpack interval 1.4' -2.0 ¹6" stainless steel soil gas screen set at 2' bgs. 2.5 3.0-PID:0.0 D/O/S:None/ None/ None 3.5 4.0 4.5 5.0 Wet; @ 5' bgs. 5.5 6.0 End of geoprobe 6.0 feet 6.5 7.0-8.0 8.5-9.0 9.5

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: AWB

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-17-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-18-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Logged By:

Drill Rig:

Drilling Contractor:

AWB

Job Site Services

Geoprobe 7822DT

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

location detail.

PID = Headspace: D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

LOG OF GEOPROBE VP-19-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-20-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

Logged By:

Drill Rig:

Drilling Contractor:

AWB

Job Site Services

Geoprobe 7822DT

LOG OF GEOPROBE VP-21-24

SHEET 1 OF 1

Drilling Method: Project: Pure Muskegon Geoprobe Project No.: 22611059.09 Sampling Method: Macrocore Location: 2400 Lakeshore Drive, Muskegon, MI, 49441

Completion Depth: 10.0 ft

location detail.

PID = Headspace: D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines

Additional data may have been collected in the field which is not included on this log.

LOG OF GEOPROBE VP-22-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-2-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-23-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 5.0 ft

Date Boring Started: 1/23/24 Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-24-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-25-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 10.0 ft

Date Boring Completed: 1/23/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-3-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Started: 1/22/24 Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

Barr Engineering Co. 3033 Orchard Vista Drive SE, Suite 200 Grand Rapids, MI 49546 BARR Granu napius, ivii 400.0 Telephone: 616-512-7000

LOG OF GEOPROBE VP-4-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe

Sampling Method: Macrocore

Date Boring Started: 1/22/24 Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT Remarks: Soil boring was completed to collect lithology information and then abandoned with bentonite chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-5-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-6-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Started: 1/22/24 Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-7-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe

Sampling Method: Macrocore

Completion Depth: 6.0 ft

Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-8-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 7.0 ft

Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

LOG OF GEOPROBE VP-9-24

SHEET 1 OF 1

Project: Pure Muskegon Project No.: 22611059.09

Location: 2400 Lakeshore Drive, Muskegon, MI, 49441 Drilling Method: Geoprobe Sampling Method: Macrocore

Completion Depth: 7.0 ft

Date Boring Started: 1/22/24 Date Boring Completed: 1/22/24 Logged By: **AWB**

Drilling Contractor: Job Site Services Drill Rig: Geoprobe 7822DT chips. Soil gas well was installed in a new boring adjacent to the original boring. A one foot long section of 2" schedule 40 PVC with slip on cap was placed over the soil gas well. A driveway marker was installed to mark the location. See the Investigation Location Figure for location detail.

February 19, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista Grand Rapid, MI 49546

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

> TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon - Methane Investigation

Project Number:

22611059.09

Lab Number:

R020902-01/08

Enclosed are results for sample(s) received 2/09/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince on 2/16/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Note: The cover letter is an integral part of this analytical report.

The Land of the Lands						CHA	IN OF	CUST	ODY F	RECOR	D	RUZU9UZ	
AirTEC	HNOLOGY	18501 E. Gale Ave., Suite 130 City of Industry, CA 91748		TU	RNAROL	IMIT DNU		DELIVE	RABLES	PAGE:		OF	
	oratories, Inc.	Ph: 626-964-4032	Stand	dard		48 hours		EDD		Condition (upon recei	ipt:	
		Fx: 626-964-5832	Same	e Day		72 hours		EDF			Sealed	Yes	No 🗌
Project No.: 226	11059.09		24 ho	ours		96 hours		LEVEL 3			Intact	Yes	No 🗌
Project Name: Pule		there Towestychen	Othe	r:				LEVEL 4			Chilled		deg C
Report To: Allé		<i>J</i>			BILLI	NG		*	Α	NALYSIS	REQUE	ST	
Company: Bull	Engineering		P.O.	No.:				3					
Street: 3033			Bill t	o:				ASTMUM46	*				
City/State/Zip: 6 For	d Rapids MI							E+2	52 H				#
Phone & Fax:	-512-7013							2	>			#	
e-mail: Gp1	ince & barr. wun		_					ethan	91/21 Vda			Constr	75
			Щ		ш	×	ER	7	4			ī	
LAB USE ONLY	SAMPLE	IDENTIFICATION	M PI	DATE	SAMPLE	MATRIX	CONTAINER TYPE	M	A			6	Flor
			S,		<i>s</i> .		00						
2020902 -01	VP-1-241	(2')	2-8	5-2Y	0537	AMY		X	×			1616	3645
- 01	VP-2-24	(2')			0902	56	1	X	×			R4335	3603
-03	VP-3-24	(2')			0945	56		X	V			171/64	3653
-04	1 UP-4-24	/29			1030	56		X	Ø			R2494	3555
-05		(2:)			1144	59		X	×			RILLY	3637
-00		(2')			1270	56		X	Ø			R1158	3573
-07		(2')			1326	59		X	8			RZYZY	3601
-08	V" - C	(21)			1427			X	ب			RSWI	3260
	VI							/					0.0
			IL DATE/TIM			Lagrana							
AUTHORIZATION TO PERFORM WORK	COMPANY					СОММЕ	:NIS				Gara I	Dring	,
SAMPLED BY AL BURNERY	COMPANY	Daw	2/80	124		* Ar	values a	s conf	dVa	email-	MINCA	.Pillice	2/9/24
RELINQUISHED BY	- DATE/TIME - 154 2 154		DATE/TIM			1							
RELINQUISHED BY	DATE/TIME		DATE/TIMI	E /	3160	1							
RELINQUISHED BY	2/9/24 9:50 DATE/TIME	RECEIVED BY	ATE/TIM		1:50	1							
						7							
I METHOD OF TRANSPORT	(circle one): Walk-In Fe	dEx UPS Courier ATLI Oth	er										

Client: Barr

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/09/24

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946

Lab No.:	R0209	02-01	R0209	02-02	R0209	02-03	R0209	02-04
Client Sample I.D.:	VP-1-2	4 (2')	VP-2-24 (2')		VP-3-2		VP-4-2	
Date/Time Sampled:	2/8/24	2/8/24 8:37		2/8/24 9:02		9:45	2/8/24	10:30
Date/Time Analyzed:	2/12/24	2/12/24 11:15		2/12/24 11:29		11:44	2/12/24	11:58
QC Batch No.:	2402120	240212GC8A1		GC8A1	2402120	GC8A1	2402120	GC8A1
Analyst Initials:	RC	RC		RC		C	RO	C
Dilution Factor:	2.4	1	2.	7	2.4	4	2.	7
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Carbon Dioxide	2.6	0.024	1.2	0.027	9.0	0.024	0.63	0.027
Oxygen/Argon	12	1.2	18	1.3	2.0	1.2	17	1.3
Nitrogen	85	2.4	81	2.7	77	2.4	81	2.7
Methane	ND	0.0024	0.011	0.0027	12	0.0024	1.1	0.0027
Carbon Monoxide	ND	0.0024	ND	0.0027	ND	0.0024	ND	0.0027

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 22-16-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/09/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0209	02-05	R0209	02-06	R0209	02-07	R0209	02-08
Client Sample I.D.:	VP-5-2	VP-5-24 (2')		VP-7-24 (2')		4 (2')	VP-8-2	4 (2')
Date/Time Sampled:	2/8/24	2/8/24 11:44		12:20	2/8/24	13:26	2/8/24	14:27
Date/Time Analyzed:	2/12/24	2/12/24 12:13		12:27	2/12/24	12:42	2/12/24	13:28
QC Batch No.:	2402120	240212GC8A1		GC8A1	2402120	GC8A1	2402120	GC8A1
Analyst Initials:	RO	RC		C	RO	C	RO	2
Dilution Factor:	2.4	4	2.:	5	2.5	5	2.5	5
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Carbon Dioxide	1.3	0.024	2.3	0.025	22	0.025	1.4	0.025
Oxygen/Argon	20	1.2	19	1.2	ND	1.3	20	1.2
Nitrogen	78	2.4	78	2.5	52	2.5	79	2.5
Methane	1.1			0.0025	25	0.0025	0.0060	0.0025
Carbon Monoxide	ND	0.0024	ND	0.0025	ND	0.0025	ND	0.0025

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-16-14

QC Batch No:

240212GC8A1

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK		L	CS	LO	CSD				
Date Analyzed:	2/12/24	9:47		2/12/2	24 8:49	2/12/2	24 9:04				
Analyst Initials:	RC	2		I	RC	F	RC				
Dilution Factor:	1.0)		1	1.0	1	1.0			%Rec %Rec 70 130 70 130 70 130 70 130 70 130	
ANALYTE	Result % v/v	RL % v/v	SPIKE AMT. % v/v	Result % v/v	% Rec.	Result % v/v	% Rec.	RPD %		_	Max. RPD
Carbon Dioxide	ND	0.010	10	9.96	99	10.0	100	0.5	70	130	30
Oxygen/Argon	ND	0.50	15	14.0	93	14.0	93	0.3	70	130	30
Nitrogen	ND	1.0	70	67.9	97	67.8	97	0.2	70	130	30
Methane	ND	0.0010	0.10	0.107	106	0.106	105	0.4	70	130	30
Carbon Monoxide	ND	0.0010	0.10	0.110	109	0.110	109	0.3	70	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: __

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date ___

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/09/24

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R02090	02-01	R0209	02-02	R0209	02-03	R02090	02-04
Client Sample I.D.:	VP-1-2	4 (2')	VP-2-2	4 (2')	VP-3-2	4 (2')	VP-4-2	4 (2')
Date/Time Sampled:	2/8/24	8:37	2/8/24	9:02	2/8/24	9:45	2/8/24	10:30
Date/Time Analyzed:	2/9/24	15:37	2/9/24	15:52	2/9/24	16:08	2/9/24	16:24
QC Batch No.:	2402096	GC3A1	2402090	GC3A1	2402090	GC3A1	2402090	GC3A1
Analyst Initials:	RC		RC	C	RC		RC	
Dilution Factor:	2.4	1	2.7	7	2.4	1	2.7	7
ANALYTE	Result ppmv	RL ppmv						
Hydrogen Sulfide	ND	0.48	ND	0.53	ND	0.48	ND	0.53
ND NA DALL DE								

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-16-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/09/24

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	R02090	02-05	R0209	02-06	R0209	02-07	R0209	02-08
Client Sample I.D.:	VP-5-2	4 (2')	VP-7-2	4 (2')	VP-6-2	4 (2')	VP-8-2	4 (2')
Date/Time Sampled:	2/8/24	11:44	2/8/24	12:20	2/8/24	13:26	2/8/24	14:27
Date/Time Analyzed:	2/9/24 1	16:39	2/9/24	16:55	2/9/24	17:10	2/9/24	17:26
QC Batch No.:	240209G	C3A1	2402090	GC3A1	2402090	GC3A1	2402090	GC3A1
Analyst Initials:	RC	:	RC	C	RC	2	RO	2
Dilution Factor:	2.4	ļ.	2.5	5	2.5	5	2.5	5
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Hydrogen Sulfide	ND	0.48	ND	0.49	ND	0.51	ND	0.49
ND = Not Detected (below DI)								

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-16-24

QC Batch No.:

240209GC3A1

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	METHOI	BLANK		I	CS	L	CSD				
Date/Time Analyzed:	2/9/24	7:57		2/9/2	24 7:27	2/9/2	24 7:42				
Analyst Initials:	R	С			RC		RC				
Dilution Factor:	1.	0			1.0		1.0			Limits	
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	0.979	86	0.990	87	1.1	70	130	30
ND N (D () 1 () D ()											

Date 09-16-24

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _____

Mark Johnson

Operations Manager

February 20, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista

Grand Rapid, MI 49546

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

> TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon – Methane Investigation

Project Number:

22611059.09 R021307-01/08

Lab Number:

Enclosed are results for sample(s) received 2/13/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince and Dana Pasi on 2/19/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

						CH	AIN OF	CUST	ODY F	RECOR	D	-K021307	
LATITECH	INOLOGY	18501 E. Gale Ave., Suite 130 City of Industry, CA 91748		TUI	RNAROU			DELIVE				OF	1
	ratories, Inc.	Ph: 626-964-4032	Stand	lard		48 hours		EDD		Condition (upon rece	ipt:	
	acorres, mer	Fx: 626-964-5832	Same	Day		72 hours		EDF			Sealed	Yes 🗌	No 🔲
Project No.: 226110	59.09		24 ho	urs		96 hours		LEVEL 3			Intact	Yes	No 🔲
Project Name: Pure M	uskegun-Methane	Tovestigation	Other	:				LEVEL 4			Chilled		deg C
Report To: Allen	Prince				BILLII	NG			A	NALYSIS	REQUE	ST	
Company: Ball	Engineering		P.O.	No.:				DING No.					
Street: 3033 (Orchard Vists		Bill to	o:				3 3	EPH 15/16				
City/State/Zip: Grall	Rapids MI							ASTM , 02,1	X			7	4
	517-7013							\$ 0	#			#	11
e-mail: aprino	ceobar wan							1 23	111			5	73
			щ		ш	×	H	64545	3			15	3
LAB USE ONLY	SAMPLEI	DENTIFICATION	SAMPLE	ATE	SAMPLE TIME	MATRIX	CONTAINER	1xed Oty,	72			anist	3
			SA		'S	Σ	8	色道				U	
2021307-01	XP-9-24 62	')	2/9/	124	0819	59	Silven	X	X			24341	3258
1 -62	VP-10-24(2")	l i	1	OPOLO	1		A	ì			R4326	3252
~ 03	VP-11-24 (2)				0953							124339	3564
-n4	VUD-13-14/21	\			1046							R4336	
-09	1/P-14-24 (2)	\			1137							R4328	3182
	-VP- 12- 24 (2)				1224				1			22201	3690
-06					•	-+							
~07	VP-17-24 (2)		1		1335	─						R1346	
V -08	VVP- 16-24 (2))	V		1405	4	V	-	4			RIIS9	3651
AUTHORIZATION TO PERFORM WORK	COMPANY	D	ATE/TIME			COMM	ENTS						
SAMPLED BY	COMPANY	Ray 2º	ATE/TIME										
RELINGUISHED BY	X DATE/TIME		ATE/TIME										
(end	2/12/24 : 1(20		A TE 0 18 18 18 18 18 18 18 18 18 18 18 18 18										
RELINQUISHED BY	DATE/TIME		ATE/FIME		946								
RELINQUISHED BY	DATESTIME	RECEIVED BY	ATE/TIME		7								
METHOD OF TRANSPORT	circle one): Walk-In Fed	Ex UPS Courier ATLL Othe	er		i								

Client: Barr Engineering

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09

Date Received: 02/13/24

Matrix: Air Reporting Units: % v/v

ASTM D1946

Lab No.:	R0213	07-01	R0213	07-02	R0213	07-03	R0213	07-04
Client Sample I.D.:	VP-9-2	VP-9-24 (2')		VP-10-24 (2')		24 (2')	VP-13-2	24 (2')
Date/Time Sampled:	2/9/24	2/9/24 8:19		2/9/24 9:06		9:55	2/9/24	10:46
Date/Time Analyzed:	2/14/24 12:51		2/14/24 13:05		2/14/24	13:20	2/14/24	13:34
QC Batch No.:	240214GC8A1		2402140	GC8A1	2402140	GC8A1	2402140	GC8A1
Analyst Initials:	RC		RO	C	RO		RO	C
Dilution Factor:	2.7	7	2.	7	2.0	6	2.5	5
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Carbon Dioxide	9.2	0.027	6.9	0.027	0.32	0.026	0.094	0.025
Oxygen/Argon	1.6	1.3	9.5	1.3	21	1.3	21	1.3
Nitrogen	88	2.7	83	2.7	79	2.6	79	2.5
Methane	1.1 0.0027		ND	0.0027	ND	0.0026	0.0059	0.0025
Carbon Monoxide	ND 0.0027		ND	0.0027	ND	0.0026	ND	0.0025

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-16-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/13/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	D0212	07.05	D0212	07.06	D0212	07.07	D0212	07.00
Lab No	R021307-05		R021307-06		R021307-07		R0213	07-08
Client Sample I.D.:	VP-14-2	VP-14-24 (2')		VP-12-24 (2')		24 (2')	VP-16-2	24 (2')
Date/Time Sampled:	2/9/24	2/9/24 11:37		2/9/24 12:24		13:35	2/9/24	14:05
Date/Time Analyzed:	2/14/24	2/14/24 13:49		2/14/24 14:03		14:17	2/14/24	14:32
QC Batch No.:	2402140	240214GC8A1		GC8A1	2402140	GC8A1	2402140	GC8A1
Analyst Initials:	RC		RO	C	RO	C	RO	C
Dilution Factor:	2.8	3	2.:	5	2.7	7	2.5	5
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Carbon Dioxide	0.41	0.028	3.0	0.025	4.4	0.027	ND	0.025
Oxygen/Argon	21	1.4	17	1.2	12	1.3	21	1.3
Nitrogen	79	2.8	80	2.5	84	2.7	79	2.5
Methane	ND	0.0028	ND	0.0025	ND	0.0027	ND	0.0025
Carbon Monoxide	ND	0.0028	ND	0.0025	ND	0.0027	ND	0.0025

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-16-24

QC Batch No:

240214GC8A1

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK		L	CS	LC	CSD				
Date Analyzed:	2/14/24	10:50		2/14/2	24 9:09	2/14/2	24 9:23				
Analyst Initials:	RO	2		I	RC	F	RC				
Dilution Factor:	1.0)		1	1.0	1	1.0			70 130	
ANALYTE	Result % v/v	RL % v/v	SPIKE AMT. % v/v	Result % v/v	% Rec.	Result % v/v	% Rec.	RPD %	Low %Rec	_	Max. RPD
Carbon Dioxide	ND	0.010	10	9.86	98	9.94	99	0.8	70	130	30
Oxygen/Argon	ND	0.50	15	14.0	93	14.0	93	0.4	70	130	30
Nitrogen	ND	1.0	70	68.0	98	68.1	98	0.2	70	130	30
Methane	ND	0.0010	0.10	0.105	104	0.103	102	1.4	70	130	30
Carbon Monoxide	ND	0.0010	0.10	0.104	103	0.103	102	1.1	70	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Operations Manage

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/13/24

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R02130	07-01	R0213	07-02	R0213	07-03	R0213	07-04
Client Sample I.D.:	VP-9-2	4 (2')	VP-10-2	24 (2')	VP-11-2	24 (2')	VP-13-2	24 (2')
Date/Time Sampled:	2/9/24	8:19	2/9/24	9:06	2/9/24	9:55	2/9/24	10:46
Date/Time Analyzed:	2/14/24	10:17	2/14/24	10:23	2/14/24	10:29	2/14/24	10:35
QC Batch No.:	2402130	GC3A2	2402130	GC3A2	2402130	GC3A2	2402130	GC3A2
Analyst Initials:	RC		RO		RC	C	RO	2
Dilution Factor:	2.7	7	2.	7	2.0	5	2.5	5
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Hydrogen Sulfide	ND	0.53	ND	0.53	ND	0.52	ND	0.51
ND = Not Detected (below DI)		6						

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By: _

Mark Johnson **Operations Manager**

The cover letter is an integral part of this analytical report

Date 02-19-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/13/24

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R02130	07-05	R0213	07-06	R0213	07-07	R0213	07-08
Client Sample I.D.:	VP-14-2	VP-14-24 (2')		24 (2')	VP-17-2	24 (2')	VP-16-2	24 (2')
Date/Time Sampled:	2/9/24 1	11:37	2/9/24	12:24	2/9/24	13:35	2/9/24	14:05
Date/Time Analyzed:	2/14/24	10:41	2/14/24	10:47	2/14/24	10:53	2/14/24	10:59
QC Batch No.:	240213G	C3A2	2402130	240213GC3A2		GC3A2	2402130	GC3A2
Analyst Initials:	RC		RC		RO		RC	2
Dilution Factor:	2.8	}	2.5	5	2.7	7	2.5	
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Hydrogen Sulfide	ND 0.56		ND	0.49	ND	0.53	ND	0.51
ND = Not Detected (below DI.)								

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson **Operations Manager**

The cover letter is an integral part of this analytical report

Date <u>02-19-24</u>

QC Batch No.:

240213GC3A2

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	METHOI	BLANK		I	LCS		CSD				
Date/Time Analyzed:	2/13/24	15:32		2/13/2	24 15:01	2/13/2	24 15:17				
Analyst Initials:	R	С]	RC		RC				
Dilution Factor:	1.	.0			1.0		1.0			Limits	
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	1.06	93	1.06	93	0.3	70	130	30
ND = Not Detected (below DI.)											

Date 02-19-24

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

February 22, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista Grand Rapid, MI 49546

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon – Methane Investigation

Project Number:

22611059.09 R021408-01/08

Lab Number:

Enclosed are results for sample(s) received 2/14/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on

the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince and Dana Pasi on 2/21/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

		7				211		2:105	221/5			R021408	- Chillippens
THECH	18501 E. Gale Ave.,	., Suite 130		7117	2314 DOL			DELIVE		RECOR	<u>ID</u>	OF	A
	City of Industry, CA		Standa	-	RNAROL	48 hours		EDD	ABLES		non roce		
Labo	oratories, Inc. Ph: 626-964-4032 Fx: 626-964-5832		Standa			72 hours		EDF		Condition		Yes 🔲	No 🔲
22/			24 hou	•		96 hours		LEVEL 3	_			Yes	No 🔲
Project No.: 226	11059.09	74.1711				96 110013	Ш	LEVEL 3			Chilled		deg C
<i>A</i>	MUSICEGON-METHANE INVEST	MGATION	Other:		50.11			LEVLL					ueg u
Report To:					BILLI	NG			AI	NALYSIS	REQUE	ST	T
Company: SARG			P.O. N					02					
Street:	3 ORCHARD VISTA		Bill to) <i>:</i>				25	10			d	
City/State/Zip: GRAN						***************************************		CHY, 602,1	11/51			垂	#
	0-512-7013							0 -2	*			EP	22
e-mail:	rince@barr.com							64%	EPA			St	1
			빌	ш	9	×	H H	200	3			CAMISTER	37.6
LAB USE ONLY	SAMPLE IDENTIFICATION		SAMPLE	DAI	SAMPLE	MATRIX	CONTAINER TYPE	rodle	H2			3	REGULATUR
	112 10 21/1			-				12-					
2021408-01	VP-18-24(2')		2/12	124	0825	SG	Silven	X	X			R5207	
-02	NP-19-24(2')				0910							R5215	3654
- 03	VP- 20-24 (2')				0946							R1357	3655
-04	1- VP- 21-24 (2')				104/							9	
-05	-VP- 22-24 (2')				1143							R4343	
-06	V/P-25-24(2')				1243							R4331	
- 07	VP - 23 - 24(2')				1344							R2417	
- 08	VP-24-24(2')			-	-				4				
- 00	VY-27-14(L)			-	1436	A)	-	·				R2491	3201
				-									
			Name of the Park										
AUTHORIZATION TO PERFORM WORK	COMPANY	DA	TE/TIME			СОММ	ENTS						
SAMPLED BY A B - 1.0	COMPANY PAGA	DA	TE/TIME	-1									
RELINQUISHED BY	ENVINY BARR	DA	TE/TIME	2117	1/14								
(end	2/12/24015												
RELINQUISHED BY	2/14/24 10:20 Kul	/ /	TE/TIME	10:2	20								
RELINQUISHED BY	DATE/TIME RECEIVED BY		TE/TIME										
METHOD OF TRANSPORT	(circle one): Walk-In FedEx UPS Courier	ATLI Other	r										

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/14/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

T I N	700011	00.01					T 2004 100 04		
Lab No.:	R0214	08-01	R0214	08-02	R0214	08-03	R0214	08-04	
Client Sample I.D.:	VP-18-2	24 (2')	VP-19-2	24 (2')	VP-20-2	24 (2')	VP-21-2	24 (2')	
Date/Time Sampled:	2/12/24	8:25	2/12/24	9:10	2/12/24	9:46	2/12/24	10:41	
Date/Time Analyzed:	2/15/24	2/15/24 11:36		11:51	2/15/24 12:05		2/15/24	12:20	
QC Batch No.:	240215GC8A1		2402150	GC8A1	2402150	GC8A1	2402150	GC8A1	
Analyst Initials:	RC		RO		RC		RC	C	
Dilution Factor:	2.4	1	2.4	4	2.4	4	2.4		
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Carbon Dioxide	0.60	0.024	0.083	0.024	ND	0.024	0.43	0.024	
Oxygen/Argon	20	1.2	19	1.2	20	1.2	12	1.2	
Nitrogen	79	2.4	81	2.4	80	2.4	88	2.4	
Methane	0.0045	0.0024	ND	0.0024	ND	0.0024	ND	0.0024	
Carbon Monoxide	ND	0.0024	ND	0.0024	ND	0.0024	ND	0.0024	
	0.0021								

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-21-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/14/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.: R021408-05 R021408-06 R021408-07 R021408-08												
Lab No.:	R0214	08-05	R0214	08-06	R0214	08-07	R0214	08-08				
Client Sample I.D.:	VP-22-2	24 (2')	VP-25-	VP-25-24 (2')		24 (2')	VP-24-	24 (2')				
Date/Time Sampled:	2/12/24	11:43	2/12/24	12:43	2/12/24	13:44	2/12/24	14:36				
Date/Time Analyzed:	2/15/24	2/15/24 12:34		12:49	2/15/24	13:03	2/15/24	13:17				
QC Batch No.:	240215GC8A1		2402150	GC8A1	2402150	GC8A1	2402150	GC8A1				
Analyst Initials:	RC		RC		RC		RO	2				
Dilution Factor:	2.4	4	2.	5	2.:	5	2.4					
	Result	RL	Result	RL	Result	RL	Result	RL				
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v				
Carbon Dioxide	2.9	0.024	0.40	0.025	2.0	0.025	1.3	0.024				
Oxygen/Argon	14	1.2	21	1.3	20	1.3	20	1.2				
Nitrogen	83	2.4	79	2.5	78	2.5	78	2.4				
Methane	ND 0.0024		0.0028	0.0025	ND	0.0025	ND	0.0024				
Carbon Monoxide	ND 0.0024		ND	0.0025	ND	0.0025	ND	0.0024				

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

QC Batch No:

240215GC8A1

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK		L	CS	LO	CSD					
Date Analyzed:	2/15/24	9:55		2/15/2	4 10:10	2/15/2	4 10:24					
Analyst Initials:	RO	2		I	RC	F	RC					
Dilution Factor:	1.0)			1.0	1	1.0			Limits		
ANALYTE	Result % v/v	RL % v/v	SPIKE AMT. % v/v	Result % v/v	% Rec.	Result % v/v	% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD	
Carbon Dioxide	ND	0.010	10	9.70	97	9.66	96	0.4	70	130	30	
Oxygen/Argon	ND	0.50	15	14.2	94	14.2	94	0.2	70	130	30	
Nitrogen	ND	1.0	70	68.5	98	68.5	98	0.1	70	130	30	
Methane	ND	0.0010	0.10	0.116	115	0.114	113	1.7	70	130	30	
Carbon Monoxide	ND	0.0010	0.10	0.105	104	0.103	102	1.7	70	130	30	

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date _/

Client: **Barr Engineering**

Attn: **Allen Prince**

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09 Date Received: 02/14/24

Matrix: Air Reporting Units: ppmv

EPA Methods 15/16

R02140	08-01	R0214	08-02	R0214	08-03	R0214	08-04
VP-18-2	24 (2')	VP-19-2	24 (2')	VP-20-2	24 (2')	VP-21-2	24 (2')
2/12/24 8:25		2/12/24	9:10	2/12/24	9:46	2/12/24	10:41
2/15/24	12:03	2/15/24	12:09	2/15/24	12:50	2/15/24	12:56
2402150	GC3A2	240215GC3A2		2402150	GC3A2	2402150	GC3A2
RC		RC		RC		RC	
2.4	1	2.4	1	2.4	ı	2.4	
Result RL ppmv ppmv		Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
ND 0.48		ND	0.48	ND	0.48	ND	0.48
	VP-18-2 2/12/24 2/15/24 2402150 RC 2.4 Result ppmv	2/15/24 12:03 240215GC3A2 RC 2.4 Result RL ppmv Ppmv	VP-18-24 (2') 2/12/24 8:25 2/15/24 12:03 240215GC3A2 RC RC 2.4 Result RL ppmv Ppmv Ppmv	VP-18-24 (2') VP-19-24 (2') 2/12/24 8:25 2/12/24 9:10 2/15/24 12:03 2/15/24 12:09 240215GC3A2 240215GC3A2 RC RC 2.4 2.4 Result ppmv Result ppmv RL ppmv	VP-18-24 (2') VP-19-24 (2') VP-20-2 2/12/24 8:25 2/12/24 9:10 2/12/24 2/15/24 12:03 2/15/24 12:09 2/15/24 240215GC3A2 240215GC3A2 240215G RC RC RC 2.4 2.4 2.4 Result ppmv Result ppmv Result ppmv Result ppmv	VP-18-24 (2') VP-19-24 (2') VP-20-24 (2') 2/12/24 8:25 2/12/24 9:10 2/12/24 9:46 2/15/24 12:03 2/15/24 12:09 2/15/24 12:50 240215GC3A2 240215GC3A2 240215GC3A2 RC RC RC 2.4 2.4 2.4 Result ppmv RL ppmv Result ppmv RL ppmv	VP-18-24 (2') VP-19-24 (2') VP-20-24 (2') VP-21-24 (2') 2/12/24 8:25 2/12/24 9:10 2/12/24 9:46 2/12/24 2/15/24 12:03 2/15/24 12:09 2/15/24 12:50 2/15/24 240215GC3A2 240215GC3A2 240215GC3A2 240215GC3A2 RC RC RC RC Result RL Result RL Result ppmv ppmv ppmv ppmv ppmv ppmv

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-19-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/14/24

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	R02140	08-05	R0214	08-06	R0214	08-07	R0214	08-08
Client Sample I.D.:	VP-22-2	24 (2')	VP-25-2	24 (2')	VP-23-2	24 (2')	VP-24-2	24 (2')
Date/Time Sampled:	2/12/24	11:43	2/12/24	12:43	2/12/24	13:44	2/12/24	14:36
Date/Time Analyzed:	2/15/24	13:02	2/15/24	13:08	2/15/24	13:14	2/15/24	13:23
QC Batch No.:	240215G	C3A2	240215GC3A2		2402150	GC3A2	2402150	GC3A2
Analyst Initials:	RC	:	RO	C	RO		RO	C
Dilution Factor:	2.4	l .	2.5	5 2.5		5	2.4	1
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Hydrogen Sulfide	ND 0.48		ND	0.51	ND	0.51	ND	0.48
ND = Not Detected (below PL)								

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: /

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-19-24

QC Batch No.:

240215GC3A2

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	METHOI) BLANK		L	CS	L	CSD				
Date/Time Analyzed:	2/15/24	11:10		2/15/2	24 10:39	2/15/2	24 10:54				
Analyst Initials:	R	С]	RC		RC				
Dilution Factor:	1.	0		1	1.0		1.0			Limits	
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	1.11	97	1.13	99	1.6	70	130	30
ND = Not Detected (below RL)											

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

February 22, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista Grand Rapid, MI 49546

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

> TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon - Methane Investigation

Project Number:

22611059.09

Lab Number:

R021606-01/07

Enclosed are results for sample(s) received 2/16/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince and Dana Pasi on 2/21/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

				CHA	AIN OF	CUST	ODY F	RECOR	<u>כ</u>		
AITTECH	1NOLOGY 18501 E. Gale Ave., Suite 13 City of Industry, CA 91748	,0 TL	JRNAROL	UND TIM	E	DELIVE	RABLES	PAGE:	1	OF	/
Labo	pratories, Inc. Ph: 626-964-4032	Standard		48 hours		EDD		Condition up	pon receir	pt:	
	Fx: 626-964-5832	Same Day		72 hours		EDF			Sealed	Yes	No 🗌
Project No.: 226	1059.09	24 hours		96 hours		LEVEL 3			Intact	Yes	No 🔲
Project Name: Put	Muskegun - Methac Investigation	Other:	~			LEVEL 4			Chilled		deg C
Report To:			BILLI	ING		9	Α	NALYSIS F	REQUES	ST .	
Company: Barr	Engineening	P.O. No.:				N. Com	1/9				
Street: 3037	Orchard VISta	Bill to:				Stm S Or, A	11/16				
City/State/Zip: Grave						Ast 2, C	#				~1
Phone& Fax:						3	EPA			#	#
e-mail: 9, pr	ince @ barr. wm					Gless's CO2, C				,	5
		щ	Тш		H		. S			3	12
LAB USE ONLY	SAMPLE IDENTIFICATION	SAMPLE	SAMPLE TIME	MATRIX	TAIN	Fixed (CH4	2			E	3
		SA O	SAMPLE	×	CONTAINER TYPE	ビジ	二			0	R
R021606-01	VP-15-24 (Z1)	2/13/24	1026	56	Silveen	X	X			RD71	3098
- 02	NPP, lot N 20' (5')		1230	ſ	1		1			1614	355
-03	WP PILOT 20'N (2')		1259						1	J1725	3710
- 04	VP PILOT 15'E (2')		1338							R2492	3 9-4
-05	NP PILOT NC (2)		1470							1618	3512
-06	VP PILOT C (2)	2/4/24	1036							R1374	
70-07	VP Polot S (21)	2/14/24									3140
	VI 1101 3 63 5	41111	111		-	•	- 1			10 100	2170
									-		
	<u> </u>										
AUTHORIZATION TO PERFORM WORK	COMPANY	DATE/TIME		СОММЕ	NTS	an and	THE OR	D 2/16/24			
SAMPLED BY AL BURYLONN	COMPANY DOM	DATE/TIME	1	* CO	UTITUE	HAC OF T	1101				
RELINQUISHED BY	DATE/TIME RECEIVED BY	DATE/TIME		1							
RELINQUISHED BY	DATE/TIME RECEIVED BY	DATE/TIME		ł							
FEDEX RELINQUISHED BY	DATE/TIME RECEIVED BY 2/15/24 IU! 31 FLOR 2 DATE/TIME RECEIVED BY	15/24 16 DATE/TIME	131								
HELINGUISHED DI	DATE/TIME RECEIVED BY	DATE/TIME									
METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS Courier ATLI (Other									

Client: Barr Engineering

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09

Date Received: 02/15/24

Matrix: Air Reporting Units: % v/v

ASTM D1946

Lab No.:	R0216	06-01	R0216	06-02	R0216	06-03	R0216	06-04
Client Sample I.D.:	VP-15-2	24 (2')	VP Pilot N	N 20' (5')	VP Pilot		VP Pilot 1	5' E (2')
Date/Time Sampled:	2/13/24	10:26	2/13/24	12:30	2/13/24	12:59	2/13/24	13:38
Date/Time Analyzed:	2/19/24	2/19/24 20:02		20:16	2/19/24	20:30	2/19/24	20:45
QC Batch No.:	240219GC8A1		2402190	GC8A1	2402190	GC8A1	2402190	GC8A1
Analyst Initials:	RC		RO	RC RC			RO	C
Dilution Factor:	2.4	4	2.5	5	2.5	5	2.7	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v
Carbon Dioxide	ND	0.024	2.0	0.025	0.40	0.025	0.22	0.027
Oxygen/Argon	21	1.2	12	1.2	21	1.3	20	1.3
Nitrogen	79	2.4	86	2.5	79	2.5	79	2.7
Methane	0.037	0.0024	0.010	0.0025	ND	0.0025	ND	0.0027
Carbon Monoxide	ND	0.0024	ND	0.0025	ND	0.0025	ND	0.0027

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: //www

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

page 1 of 1

Date 02-21-24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/15/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0216	06-05	R0216	06-06	R0216	06-07	
Client Sample I.D.:	VP Pilot	VP Pilot NC (2')		t C (2')	VP Pilo	t S (2')	
Date/Time Sampled:	2/13/24	2/13/24 14:20		10:36	2/14/24	11:12	
Date/Time Analyzed:	2/19/24	2/19/24 20:59		21:14	2/19/24	21:28	
QC Batch No.:	2402190	240219GC8A1		GC8A1	2402190	GC8A1	
Analyst Initials:	RO	RC		С	RO		
Dilution Factor:	2.	7	2.	4	2.3	2	
ANALYTE	Result % v/v	RL % v/v	Result % v/v	RL % v/v	Result % v/v	RL % v/v	
Carbon Dioxide	0.52	0.027	0.18	0.024	1.7	0.022	
Oxygen/Argon	20	1.4	21	1.2	17	1.1	
Nitrogen	79	2.7	79	2.4	82	2.2	
Methane	ND			0.0024	ND	0.0022	
Carbon Monoxide	ND	0.0027	ND	0.0024	ND	0.0022	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 121-34

QC Batch No: 240219GC8A1

Matrix: Air
Reporting Units: % v/v

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK		L	CS	LCSD					
Date Analyzed:	2/19/24 14:13			2/19/24 14:44		2/19/24 14:58					
Analyst Initials:	RO	RC		RC		RC					
Dilution Factor:	1.0			1.0		1.0				Limits	
ANALYTE	Result % v/v	RL % v/v	SPIKE AMT. % v/v	Result % v/v % Rec.		Result % v/v	% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD
Carbon Dioxide	ND	0.010	10	10.1	101	9.65	96	4.4	70	130	30
Oxygen/Argon	ND	0.50	15	13.9	93	14.1	94	1.4	70	130	30
Nitrogen	ND	1.0	70	67.9	97	68.2	98	0.5	70	130	30
Methane	ND	0.0010	0.10	0.110	109	0.107	106	2.7	70	130	30
Carbon Monoxide	ND	0.0010	0.10	0.106	0.106 105		102	2.8	70	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: Mark Johnson

Mark Johnson
Operations Manager

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

02/15/24

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R0216	06-01	R0216	06-02	R0216	06-03	R021606-04	
Client Sample I.D.:			VP Pilot I	N 20' (5')	VP Pilot (2'		VP Pilot 15' E (2'	
Date/Time Sampled:	2/13/24	10:26	2/13/24	12:30	2/13/24	12:59	2/13/24	13:38
Date/Time Analyzed:	2/20/24	11:28	2/20/24	11:34	2/20/24	11:40	2/20/24 11:46	
QC Batch No.:	2402200	GC3A1	2402200	GC3A1	2402200	GC3A1	240220GC3A1	
Analyst Initials:	RC		RC		RC		RC	
Dilution Factor:	2.4	l .	2.5		2.5		2.7	
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
Hydrogen Sulfide	ND	0.48	ND	0.49	ND	0.51	ND	0.53
ND = Not Detected (below RI.)								

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By: /

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 02-21:24

Client: Barr Engineering

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09

Date Received: 02/15/24

Matrix: Air Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R02160	06-05	R0216	06-06	R0216	06-07	
Client Sample I.D.:	VP Pilot NC (2')		VP Pilot C (2')		VP Pilo	t S (2')	
Date/Time Sampled:	2/13/24	14:20	2/14/24	10:36	2/14/24	11:12	
Date/Time Analyzed:	2/20/24	11:51	2/20/24	11:57	2/20/24	12:03	
QC Batch No.:	240220G	C3A1	2402200	GC3A1	2402200	GC3A1	
Analyst Initials:	RC	2	RC		RC		
Dilution Factor:	2.7	1	2.4		2.2		
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	
Hydrogen Sulfide	ND 0.55		ND	0.48	ND	0.44	

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

QC Batch No.:

240220GC3A1

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	METHOI) BLANK		I	CS	LCSD					
Date/Time Analyzed:	2/20/24 9:23			2/20/24 8:52		2/20/24 9:07					
Analyst Initials:	RC			RC		RC					
Dilution Factor:	1.0			1.0		1.0			Limits		
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	1.19	104	1.19	104	0.3	70	130	30
ND = Not Detected (heles: DL)											

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date 0221-24

March 18, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista Grand Rapid, MI 49546

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon – Methane Investigation

Project Number: 22611059.09 Lab Number: R030108-01/03

Enclosed are results for sample(s) received 3/01/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Modification to EPA Method TO15 2-Hexanone required quadratic regression calibration.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince and Dana Pasi on 3/15/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Annala Stile Sindies &

Barr Engineering Co. (hair	6	Cus	toda Com	nla Oriale-si	C4-4	granacas	převlýt-ový blavoum	CONTRACTOR CONTRACTOR	030		61	03		2 of 11 R030108
Barr Engineering Co. (Ann Arbor Duluth Bismarck Grand Rapids	Hibbin	C	□ Mir	nneapolis M] UT] WI		Asm Diguil	Action of the Person Street, S	Analysis Req	uested Soil		COC Number		79
REPORT TO	e Sielle de la company de la c			INVOICE	principles and an experience of the property of		cione		3		And the second	So. dilorena	Matrix Co	de: I	Preservative Code:
Company: "Barr	etherodological person	Com	pany:	enreces medianetim intra-proposate against defects attractive consectability amendes intra-polyg	udia metyen ette seder ter i den jost fingujárszenégés nepelnyundatátót essémbolajátás veren ingajá	of mind the best for the second se	-	S	+ 3	And the second s	The second	100	GW = Ground SW = Surface		A = None
Address: 3033 Orchard V	15/2	Addre	ess:	a graduater or per sea de company		and the same of the same of	z	ine!			Carrier Services	Section 1	WW = Waste	Water	B = HCI $C = HNO_3$
Name: Allen Prince.	The second second	Name:						+1	3	referènciques (verez) q (very	Manager and	Appendix 1,112	DW = Drinkin S = Soil/So		D = H₂SO₄ E = NaOH
email: aprince o borr. cum		email:						1 000	4	Parababase	To do disease.	The state of the s	SD = Sedime		F = MeOH
Copy to: datamgt@barr.com	Photogram and the same	P.O.						00	EF24	3	n	- Tilbilitania	O = Other		$G = NaHSO_4$ $H = Na_2S_2O_3$
Project Name: Drc Muskeson	The same of the same of the same of the same of	Barr Project No: 226 11 059.09 @ 31414						ber		\ <u> </u>	Po.	ds			I = Ascorbic Acid
monormonic management of the second s	San	ple De	enth	1	I management	14	- Σ	Numbe	H25	2	The state of the s	Solids			$J = NH_4CI$ K = Zn Acetate
Location	Annahaman and Annah Annah Annah Annah	The state of the s	Unit	Collection Date	Collection Time	Matrix	orn			178	nor	%			O = Other
$\frac{\text{dim}/\pi}{\text{or in.}} \text{ (mm/dd/yyyy)} \text{ (hh:mm)} \text{Code}$					Perf	lota					Preservative C		en gelegen von der Gebergeringen der der der gelegen der der gelegen der gelegen der gelegen der gelegen der g Der gelegen der		
1 1/2 DILL 0 CENT	in in the second second second		-			1	1 1					-	Field Filtered Y,		Vacation
VI FINT C CS			to a series are	2/27/24	1120	39	N	IX	X	A CONTRACTOR OF THE PARTY OF TH	The second secon	Mission	R2209		2585
1. VP Pilot C C5') 2. Pilot ECClust 3. Pilot ECClust (8)				2/27/2024	1302	Ar	N			XX			A 8063	A TOTAL A TOTAL PROPERTY OF THE A TOTAL	3525
3. P. lot ECClout (8)	1	and the state of t		2/27/24	Marine 1	Ar	W) X	X		TEP COMPANIAN AND AND AND AND AND AND AND AND AND A		R4339	onthe the Control of the Alexandra	The state of the s
4.	Principles and the second		The Arthurst Course					1/1	- -				K7331	Contraction of the Contraction o	3540
5.	adionary may say say say say say say say say say s		77 - A1		on the state of th				n or a spikely,		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		there, lengue the construction to the length of the section in the	No. 4 may res	moderni grandini na najvije naseline, ki koli njenas povjete a - 1, a 1
	and rose blocker	* Waterpools		The control of the co						Control of the contro	Control of the Contro	STATE OF THE PARTY			
5.	And other state of the state of	Phi she face .			(5 m) Cital and all and making gives to the first and a community of	PMTN's mary said-1910 -							the contract of the second contract of the state of the second of the second	he (1970) turnship the trace (1970) source	annes fluidente (m. e.). Locale (m. e.) depois anne (m. e.) (m. e.) de hadige (i) par mar (m. e.)
7.					and the second of the second o	and the second second second									
		- Samuel	- Control	Property			Minister Management		The second second	Control of the Control			that I select the select new technology and property was to	and the Heridamy Main step. (3) is an entry top	nderville (by Left gar" ()
3.				and the second s	A Commission of the Commission	The foreign of personal col-						Transference de la constante d	Disc (Make 19, 19, 19)	the section of the se	-motoret (a) and a strong graph representation and in motorical
emples a paper desert in a service per sention and a service s				The state of the s	ogan and may the first and another part of the first and another species are approximately another species and another species and another species are approximately another species and another species are approximately approximately and another species are	and a make and while the state of the state							of lighted the dissipation of the sequel settlement to the control of the security of security intersects	al III alliper of the state of	وردوا وراوا المرسام والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان والمستوان
0.			The state of the s	and only or one of a control of control of	the stage is the stage of the s	Ne (Mer Ny gry) in 6-32 security s							The state of the s	the the state of t	
- Company of the Comp	do designation		denmentale	and the second s			CORPORATE LA COMMA	* Al Valdera mys.	Market Comment	diameter (Annual An		*Inclos p	or A. Prima	2 3/4/24
BARR USE ONLY	riidasydandadi yddigddigaedd	Relingui	shed b		On Id	e? D	ate	1	Time	Received	L L L	LL		Date	
ampled by: AW3	L			Mon	On Id		129/	74		veceived	Dy.			Date	Time
arr Proj. Manager: AP	- Taranta - Tara	Relinqui	sned by	y: EX	On Ic		ate / 24		Time	Received	by:		alan ka salahan ju ina atau pringan (taga ingah dari-kin atau palinya kada kinan jaga kan junga	Date	Time
arr DQ Manager:		Samples		Chief bentrete de la reprint Calegar et Salac et Salac et Salac de Calegar de la comprese del la comprese de la comprese del la comprese de la comprese del la comprese de	designation of the second seco	eral Expre	and the party of the last	Sam	retractive (Magazanta) briatagaige	Air Bill No	andre begreiere entre entre entre en			3/1/21	1 11:39
ab Name: Ar Technolisy the		Lab WC	**************************************	Othe	er:		a famous concessors on the second	or and a last special contracts		The principle for each purpose was written by the purpose of the p	MANA SECT OF THE PROSECULAR PROSE	y della dell	Marian and a second	Standard Tu	Time Time Time Time Time Time Time Time
tribution - White-Original: Accompanies	MATERIAL PROPERTY.	Mariner And Mineral Advances on the Con-			emperature on I		(_):		Custody	Seal Intac	t? 🗆 Y 🗀	N [None U	Rush (mm/d	d/yyyy)

Client: Barr Engineering

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09

Date Received: 03/01/24

Matrix: Air
Reporting Units: ppmv

EPA Methods 15/16

Lab No.:	R03010	08-01	R0301	08-03		
Client Sample I.D.:	VP Pilot C (5')		Pilot Effluent (8)			
Date/Time Sampled:	2/27/24 11:20		2/27/24	13:45	 	
Date/Time Analyzed:	3/4/24 11:48		3/4/24 12:19			
QC Batch No.:	240304GC3A1		240304GC3A1			
Analyst Initials:	RC	7	RC			
Dilution Factor:	2.7	7	2.5	5		
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv		
Hydrogen Sulfide	ND	0.55	ND	0.49		

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: Mark Johnson

Date <u>03-14-24</u>

Operations Manager

QC Batch No.:

240304GC3A1

Matrix:

Air

Reporting Units:

ppmv

EPA Methods 15/16

Lab No.:	METHOI	METHOD BLANK		LCS		LCSD					
Date/Time Analyzed:	3/4/24 8:09			3/4/24 8:24		3/4/24 8:39					
Analyst Initials:	RC			RC		RC					
Dilution Factor:	1.0			1.0		1.0				Limits	
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	1.17	103	1.19	105	1.9	70	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: ______

Mark Johnson

Operations Manager

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/01/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0301	08_01	R0301	08-02	R0301	08 03	
	10301	00-01	KU3U1	00-02	1030100-03		
Client Sample I.D.:	VP Pilot	VP Pilot C (5')		Pilot Effluent		uent (8)	
Date/Time Sampled:	2/27/24	2/27/24 11:20		2/27/24 13:02		13:45	
Date/Time Analyzed:	3/5/24	3/5/24 15:38		3/5/24 15:53		16:07	
QC Batch No.:	240305GC8A1		240305GC8A1		2403050	GC8A1	
Analyst Initials:	RC		RC		RC		
Dilution Factor:	2.1	2.7		4	2.5	5	 -
	Result	RL	Result	RL	Result	RL	
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	
Carbon Dioxide	12	0.027			0.21	0.025	
Oxygen/Argon	1.4	1.4	_		21	1.2	
Nitrogen	11	2.7			79	2.5	
Methane	76	0.0027	0.023	0.0024	0.023	0.0025	
Carbon Monoxide	ND	0.0027			ND	0.0025	

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: //www.kla

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 03-14-24

QC Batch No:

240305GC8A1

Matrix:

Air

Reporting Units:

% v/v

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK				LO	CSD				
Date Analyzed:	3/5/24	11:14		3/5/2	4 15:09	3/5/2	4 15:24	1			
Analyst Initials:	RO			ŀ	RC	I	₹C	1			
Dilution Factor:	1.0)		1	1.0]	1.0			Limits	
ANALYTE	Result % v/v	RL % v/v	SPIKE AMT. % v/v			Result % v/v	% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD
Carbon Dioxide	ND	0.010	10	9.96	99	9.86	98	1.0	70	130	30
Oxygen/Argon	ND	0.50	15	14.1	94	14.1	94	0.1	70	130	30
Nitrogen	ND	1.0	70	68.3	98	68.3	98	0.0	70	130	30
Methane	ND	0.0010	0.10	0.101	100	0.0988	98	1.8	70	130	30
Carbon Monoxide	ND	0.0010	0.10	0.101	100	0.0990	98	1.7	70	130	30
				<u></u>	<u> </u>	<u></u>					

Date <u>B-14-24</u>

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

1

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/01/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

Lab No.:	R03010	08-02	-	I	Ī	
Client Sample I.D.:	Pilot Ef					
Date/Time Sampled:	2/27/24	13:02				
Date/Time Analyzed:	3/11/24	22:57				
QC Batch No.:	240311N	IS2A1				
Analyst Initials:	VN	1				
Dilution Factor:	2.4	1				
	Result	RL				
ANALYTE	ppbv	ppbv				
Dichlorodifluoromethane (12)	ND	2.4				Ì
Chloromethane	ND	2.4				
1,2-Cl-1,1,2,2-F ethane (114)	ND	2.4				
Vinyl Chloride	ND	2.4				
Bromomethane	ND	2.4				
Chloroethane	ND	12				
Trichlorofluoromethane (11)	ND	2.4				
1,1-Dichloroethene	ND	2.4				
Carbon Disulfide	13	2.4				
1,1,2-Cl 1,2,2-F ethane (113)	ND	2.4				
Acetone	65	12				
Methylene Chloride	ND	2.4				
t-1,2-Dichloroethene	ND	2.4				
1,1-Dichloroethane	ND	2.4				
Vinyl Acetate	ND	2.4				
c-1,2-Dichloroethene	ND	2.4				
2-Butanone	220	12				
t-Butyl Methyl Ether (MTBE)	ND	2.4				
Chloroform	ND	2.4				
1,1,1-Trichloroethane	ND	2.4				
Carbon Tetrachloride	ND	2.4				
Benzene	ND	2.4				
1,2-Dichloroethane	ND	2.4				
Trichloroethene	ND	2.4				
1,2-Dichloropropane	ND	2.4				
Bromodichloromethane	ND	2.4				
c-1,3-Dichloropropene	ND	2.4				
4-Methyl-2-Pentanone	ND	2.4				
Toluene	ND	2.4				
t-1,3-Dichloropropene	ND	4.8				

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/01/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

Lab No.:	R03010	08-02			
Client Sample I.D.:	Pilot Ef	fluent			
Date/Time Sampled:	2/27/24	13:02			
Date/Time Analyzed:	3/11/24	22:57			
QC Batch No.:	240311N	IS2A1			
Analyst Initials:	VN	1			
Dilution Factor:	2.4	1			
	Result	RL			
ANALYTE	ppbv	ppbv			
1,1,2-Trichloroethane	ND	2.4			
Tetrachloroethene	ND	2.4			
2-Hexanone	ND	2.4			
Dibromochloromethane	ND	2.4			
1,2-Dibromoethane	ND	2.4			
Chlorobenzene	ND	2.4			
Ethylbenzene	ND	2.4			
p,&m-Xylene	ND	4.8			
o-Xylene	ND	2.4			
Styrene	ND	2.4			
Bromoform	ND	2.4			
1,1,2,2-Tetrachloroethane	ND	2.4			
Benzyl Chloride	ND	2.4			
4-Ethyl Toluene	ND	2.4			
1,3,5-Trimethylbenzene	ND	2.4			
1,2,4-Trimethylbenzene	ND	2.4			
1,3-Dichlorobenzene	ND	2.4			
1,4-Dichlorobenzene	ND	2.4			
1,2-Dichlorobenzene	ND	2.4			
1,2,4-Trichlorobenzene	ND	4.8			
Hexachlorobutadiene	ND	2.4			

RL = Reporting Limit

ND = Not Detected (below RL)

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date <u>03-/5-24/</u>

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

R030108.xlsx

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/01/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

Lab No.:	METHOD	BLANK						
Client Sample I.D.:			4					
Date/Time Sampled:							1	· · · · · · · · · · · · · · · · · · ·
Date/Time Analyzed:	3/11/24	13:40	<u> </u>		-			
QC Batch No.:	240311N						 	
Analyst Initials:	VN							
Dilution Factor:	0.2							
	Result	RL	<u> </u>		† 		1	T =
ANALYTE	ppbv	ppbv						
Dichlorodifluoromethane (12)	ND	0.20						1
Chloromethane	ND	0.20						
1,2-Cl-1,1,2,2-F ethane (114)	ND	0.20						
Vinyl Chloride	ND	0.20						
Bromomethane	ND	0.20						
Chloroethane	ND	1.0						
Trichlorofluoromethane (11)	ND	0.20						
1,1-Dichloroethene	ND	0.20						
Carbon Disulfide	ND	0.20						
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.20						
Acetone	ND	1.0						
Methylene Chloride	ND	0.20						
t-1,2-Dichloroethene	ND	0.20						
1,1-Dichloroethane	ND	0.20						
Vinyl Acetate	ND	0.20						
c-1,2-Dichloroethene	ND	0.20						
2-Butanone	ND	1.0						
t-Butyl Methyl Ether (MTBE)	ND	0.20		<u> </u>				
Chloroform	ND	0.20						
1,1,1-Trichloroethane	ND	0.20						
Carbon Tetrachloride	ND	0.20						
Benzene	ND	0.20						
1,2-Dichloroethane	ND	0.20						
Trichloroethene	ND	0.20						
1,2-Dichloropropane	ND	0.20						
Bromodichloromethane	ND	0.20						
c-1,3-Dichloropropene	ND	0.20						
4-Methyl-2-Pentanone	ND	0.20			<u> </u>	-		
Toluene	ND	0.20						
t-1,3-Dichloropropene	ND	0.40					<u> </u>	

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/01/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

	b commerce					
Lab No.:	METHOD	BLANK	 			
Client Sample I.D.:						
Date/Time Sampled:	atr					
Date/Time Analyzed:	3/11/24	13:40				
QC Batch No.:	240311N	IS2A1				
Analyst Initials:	VN	1				
Dilution Factor:	0.2	0				
	Result	RL				
ANALYTE	ppbv	ppbv		i		
1,1,2-Trichloroethane	ND	0.20			i	
Tetrachloroethene	ND	0.20				
2-Hexanone	ND	0.20				
Dibromochloromethane	ND	0.20				
1,2-Dibromoethane	ND	0.20				
Chlorobenzene	ND	0.20				
Ethylbenzene	ND	0.20				
p,&m-Xylene	ND	0.40				
o-Xylene	ND	0.20				
Styrene	ND	0.20				
Bromoform	ND	0.20				
1,1,2,2-Tetrachloroethane	ND	0.20				
Benzyl Chloride	ND	0.20				
4-Ethyl Toluene	ND	0.20				
1,3,5-Trimethylbenzene	ND	0.20				
1,2,4-Trimethylbenzene	ND	0.20				
1,3-Dichlorobenzene	ND	0.20				
1,4-Dichlorobenzene	ND	0.20				
1,2-Dichlorobenzene	ND	0.20				
1,2,4-Trichlorobenzene	ND	0.40				
Hexachlorobutadiene	ND	0.20				

RL = Reporting Limit

ND = Not Detected (below RL)

Reviewed/Approved By:

Mark Johnson Operations Manager Date 03-15-14

LCS/LCSD Recovery and RPD Summary Report

QC Batch #: 240311MS2A1

Matrix: Air Reporting Units: ppbv

EPA Method TO15
LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	МЕТНО	D BLANK		L	CS	Lo	CSD				
Date/Time Analyzed:	3/11/2	4 13:40	1	3/11/2	4 11:53	3/11/2	4 12:29				
Analyst Initials:	V	VM		V	M	V	'M				
Dilution Factor:	0.20			1.0		1.0					
ANALYTE	Result ppbv	RL ppbv	AMT. ppbv	Result ppbv	% Rec.	Result ppbv	% Rec.	RPD	Low %Rec	High %Rec	Max. RPD
1,1-Dichloroethene	ND	0.20	10	9.53	95.3	9.34	93.4	1.9	70	130	30.0
Methylene Chloride	ND	0.20	10	8.99	89.9	8.88	88.8	1.3	70	130	30.0
Trichloroethene	ND	0.20	10	8.75	87.5	8.39	83.9	4.2	70	130	30.0
Toluene	ND	0.20	10	9.12	91.2	9.34	93.4	2.5	70	130	30.0
1,1,2,2-Tetrachloroethane	ND	0.20	10	8.46	84.6	8.70	87.0	2.8	70	130	30.0
				<u></u>							

ND = Not Detected (below RL)
RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

March 20, 2024

Barr Engineering ATTN: Allen Prince 3033 Orchard Vista Grand Rapid, MI 49546

EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

> TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: Pure Muskegon – Methane Investigation

Project Number:

22611059.09

Lab Number:

R030511-01/10

Enclosed are results for sample(s) received 3/05/24 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Modification to EPA Method TO15 –2-Hexanone required quadratic regression calibration.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Allen Prince and Dana Pasi on 3/19/24.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Barr Engineering Co. Cl	hain	of (Analysis Requested						COC Number: 56604			30511	1	
☐ Ann Arbor ☐ Duluth ☐ FBARR ☐ Bismarck ☐ Grand Rapids ☐ J	Hibbing Jeffersor			neapolis [⊒ KS ⊒ MI ⊒ MN	☐ MO ☐ ND ☐ SD	UT WI Other:		-		Water	r		Soil		coc _	of			
REPORT TO		•		INVO	ICE TO)		1			315124						x Code:		rvative Code:	
Company: Rarr		Compa	any:					1	ers		6					SW = St	roundwater urface Water	В =	: None : HCl	
Address: 3033 Orchard Vista		Addres	ss:				12.	z	aine		ŭ						aste Water rinking Water		: HNO₃ : H₂SO₄	
Name: Allan Prince		Name:						>	ontain		2					S = Sc SD = Se	oil/Solid	E =	NaOH	
email: aprince @ bast com		email:				,			Ť	J,	20					0 = 0		G =	= MeOH = NaHSO₄	ı
Copy to: datamgt@barr.com		P.O.				*		MS	ار او	3									: Na ₂ S ₂ O ₃ : Ascorbic Acid	
Project Name: Pure Muskejan		Barr Pi	roject 1	No: 2261	1059.	09 90 5	16124	MS,	Number	T	T Se				Solids			J =	: NH₄Cl : Zn Acetate	П
	Sam	ole De	pth	Collection		Collection		L.	N	Z	4				% S	*Incl co	per 31574		Other	
Location	Start	Stop	Unit (m./ft.	Date (mm/dd/y	.0.04)	Time (hh:mm	Code	Perform	Total								ive Code			1
1 0 1 20 1			or in.)	(mm/dd/y	ууу)	(1111.171111)	,	ď	<u>⊢</u>						+	Field Filte			Decle	-
1. Pilot ECHWART TO15				3/1/20	124	0845	Av	N		XX						A806			3210	†
2. Pilot Esslvent SC				3/1/20	ny	0855	Ar	1		X	XX					R520			3504	
3. VP Pilot 20'N (5')				3/1/20	224	1045	54				11)					RII6	2	,	3603	
4 VP P. lot zo'N (2')				3/1/20	24	1055	- 56									1534	(8		3572	1
5. VP Prot 15'E (2)				3/1/20	24	1116	54					:				R1345			3501	
6. VP P. lot N (5)				3/1/20	24	1137	56									R520	1		3580	
"VP PILOT N(2)				3/1/20	124	1158	56									R115	5		3264	1/18
8. VP Pilot (C5)				3/1/20	24	1338	SG									RSZN	מ		3534	Rev. 01/02
9. VP P1/0+ C (2)				3/1/20	4 1	348	56				T. T.					R520	8		3532	015 RLG
10. UP P, 10+ 5 (2)				3/1/20	24	140)	56									RZZO	6		3590	dy Form 2
Sampled by: AWB	_	Relinqui		- 1 -7			On Ice? [) ate	V	Ti	ne 40	Recei	ved by					Date	Time	Custo
Sampled by: AW3 Barr Proj. Manager: AP		Relinqui				(On Ice?	ate	Ť	Tii	ne	Recei	v ed by				i i	Date	Time	ain Of
Barr DQ Manager:			EDE					15/	_	9:1		4	Ila.				3/	5/24	9:43	4S\Ch
Lab Name: Ar Technology Lob		Samples	Shipp		Couri Other		Federal Exp	ress		Samp	ler —	Air Bi	ll Num	iber:					ue Date: Around Time	1:RLG\STDFORMS\Chain Of Custody Fo
Lab Location City of trolosmy CA		Lab WC):		Ter	mperature	on Receipt	(°C):		(ustody	y Seal	Intact?	□У□	JN	□ None	☐ Rush _	(mm/dd/yy		:RLG\

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/05/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0305	11-01	R0305	11-02	R0305	11-03	R0305	11-04
Client Sample I.D.:	Pilot Et		Pilot Eff1	uent SC	VP Pilot 2	20' N (5')	VP Pilot 2	20' N (2')
Date/Time Sampled:	3/1/24	8:45	3/1/24	8:55	3/1/24	10:45	3/1/24 10:55	
Date/Time Analyzed:	3/13/24	4 9:50	3/13/24	10:04	3/13/24	10:19	3/13/24	10:33
QC Batch No.:	2403130	GC8A1	2403130	GC8A1	2403130	GC8A1	2403130	GC8A1
Analyst Initials:	RC		R	C	R	C	RO	
Dilution Factor:	2.5		2.	2	2.4	4	2.7	
ANALYTE	Result % v/v	RL % v/v						
Carbon Dioxide			0.085	0.022	1.3	0.024	0.40	0.027
Oxygen/Argon			21	1.1	20	1.2	21	1.3
Nitrogen			79	2.2	78	2.4	79	2.7
Methane	0.013	0.0025	0.012	0.0022	ND	0.0024	ND	0.0027
Carbon Monoxide			ND	0.0022	ND	0.0024	ND	0.0027
	<u></u>							<u></u>

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date <u>B & H</u>

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

Date Received:

03/05/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0305	11-05	R0305	11-06	R0305	11-07	R0305	11-08				
Client Sample I.D.:	VP Pilot 1	15' E (2')	VP Pilo	t N (5')	VP Pilo	t N (2')	VP Pilo	t C (5')				
Date/Time Sampled:	3/1/24	11:16	3/1/24	11:37	3/1/24	11:58	3/1/24 13:38					
Date/Time Analyzed:	3/13/24	11:00	3/13/24	11:15	3/13/24	11:29	3/13/24	11:59				
QC Batch No.:	2403130	240313GC8A1		GC8A1	2403130	GC8A1	2403130	GC8A1				
Analyst Initials:	RC		R	С	RO	C	R	C				
Dilution Factor:	2.:	2.5		8	2.	5	2.4					
	Result	RL	Result	Result RL		RL	Result	RL				
ANALYTE	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v	% v/v				
Carbon Dioxide	0.23	0.025	7.6	0.028	0.099	0.025	9.6	0.024				
Oxygen/Argon	21	1.3	7.6	1.4	21	1.3	4.8	1.2				
Nitrogen	79	2.5	63	2.8	79	2.5	24	2.4				
Methane	ND	0.0025	22	0.0028	0.0028	0.0025	61	0.0024				
Carbon Monoxide	ND	0.0025	ND	ND 0.0028		0.0025	ND	0.0024				

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = **Reporting Limit**

Reviewed/Approved By: /

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 03-15-34

page 1 of 1

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/05/24

Matrix:

Air

Reporting Units: % v/v

ASTM D1946

Lab No.:	R0305	11-09	R0305	11-10	-		
Client Sample I.D.:	VP Pilot	VP Pilot C (2')		t S (2')			
Date/Time Sampled:	3/1/24	13:48	3/1/24	14:01			
Date/Time Analyzed:	3/13/24	3/13/24 12:14		12:28		 T	
QC Batch No.:	2403130	GC8A1	2403130	GC8A1		 1	
Analyst Initials:	RO	RC		С			
Dilution Factor:	2.5	2.5		3			
ANALYTE	Result % v/v	RL % v/v	Result	RL % v/v			
ANALITE	70 V/V	/0 V/V	% v/v	70 V/V			
Carbon Dioxide	0.16	0.025	0.12	0.023			
Oxygen/Argon	20	1.3	21	1.1			
Nitrogen	79	2.5	79	2.3			
Methane	0.0078			0.0023			
Carbon Monoxide	ND 0.0025		ND	0.0023			

Results normalized including non-methane hydrocarbons

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: (

Mark Johnson

Operations Manager

Date <u>03-18-34</u>

QC Batch No:

240313GC8A1

Matrix:

Air

Reporting Units:

 $^{0}\!\!/_{\!0}$ $_{V}\!\!/_{V}$

ASTM D1946 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK		L	CS	L	CSD				
Date Analyzed:	3/13/24	9:06		3/13/	24 8:09	3/13/	24 8:23				
Analyst Initials:	RO	C		Į.	RC		RC	1			
Dilution Factor:	1.0)			1.0]	1.0	1		Limits	
ANALYTE	Result	RL % v/v	SPIKE AMT. % v/v	Result % v/v			% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD
Carbon Dioxide	ND	0.010	10	9.96	99	9.99	100	0.3	70	130	30
Oxygen/Argon	ND	0.50	15	14.0	93	14.0	93	0.2	70	130	30
Nitrogen	ND	1.0	70	68.0	97	68.1	98	0.2	70	130	30
Methane	ND	0.0010	0.10	0.103	102	0.102	101	0.8	70	130	30
Carbon Monoxide	ND	0.0010	0.10	0.105	104	0.104	103	0.8	70	130	30
	<u></u>	L	<u> </u>	<u></u>					<u> </u>		

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/05/24

Matrix:

Air

Reporting Units: ppmv

EPA Methods 15/16

N (5') 1:37 4:31	3/1/24 3/7/24 2403070	11:58 14:46 GC3A1	VP Pilo 3/1/24 3/7/24 2403070	13:38 15:02 GC3A1	3/1/24 3/7/24 240307C	13:48 15:18
4:31	3/7/24 2403070	14:46 GC3A1	3/7/24 2403070	15:02 GC3A1	3/7/24 2403070	15:18
	2403070	GC3A1	2403070	GC3A1	3/7/24 2403070	15:18
C3A1					2403070	
	RO		R/			
			I 1//	C	RC	
	2.5	5	2.	4	2.5	
RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv
0.56	ND	0.51	ND	0.48	ND	0.51
	ppmv	ppmv ppmv	ppmv ppmv ppmv	ppmv ppmv ppmv ppmv	ppmv ppmv ppmv ppmv ppmv	ppmv ppmv ppmv ppmv ppmv ppmv

RL = **Reporting Limit**

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 0318-39

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/05/24

Matrix:

Air

Reporting Units:

ppmv

EPA	Methods	15/16	

Lab No.:	R0305	11-02	R0305	11-03	R0305	11-04	R0305	11-05
Client Sample I.D.:	Pilot Effluent S		VP Pilot 2	0' N (5')	VP Pilot 2	20' N (2')	VP Pilot 1	5' E (2')
Date/Time Sampled:	3/1/24	8:55	3/1/24	10:45	3/1/24	10:55	3/1/24	11:16
Date/Time Analyzed:	3/7/24	10:24	3/7/24	10:30	3/7/24 13:59		3/7/24	14:15
QC Batch No.:	2403070	GC3A1	2403070	GC3A1	240307GC3A1		2403070	GC3A1
Analyst Initials:	RC		RO	2	RO	7	RO	0
Dilution Factor:	2.2	2	2.4	1	2.	7	2.5	5
ANALYTE	Result ppmv	RL ppmv	Result ppmv	RL ppmv	Result ppmv	RL ppmv	RL Result	
Hydrogen Sulfide	ND	0.44	ND	0.48	ND	0.53	ND	0.51
ND - Not Detected (b.). DI	<u></u>				<u></u>			

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: _

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date B.G. 24

Barr Engineering

Attn:

Allen Prince

Project Name:

Pure Muskegon - Methane Investigation

Project No.:

22611059.09

Date Received:

03/05/24

Matrix:

Air

Reporting Units: ppmv

	E	PA Metl	ods 15/1	6				
Lab No.:	R03051	11-10						
Client Sample I.D.:	VP Pilot	S (2')						
Date/Time Sampled:	3/1/24 1	14:01						
Date/Time Analyzed:	3/7/24 1	3/7/24 15:34		<u> </u>				
QC Batch No.:	240307G	C3A1						
Analyst Initials:	RC	-			$\overline{}$		<u> </u>	
Dilution Factor:	2.3	3				_		
ANALYTE	Result ppmv	RL ppmv						
Hydrogen Sulfide	ND	0.46						

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: (

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

Date 03-18-24

QC Batch No.:

240307GC3A1

Matrix:

Air

Reporting Units:

ppmy

EPA Methods 15/16

Lab No.:	METHOI	BLANK		1	CS	L	CSD				
Date/Time Analyzed:	3/7/24	17:50		3/7/2	24 8:05	3/7/2	24 8:20				
Analyst Initials:	R	С			RC		RC				
Dilution Factor:	1.	.0			1.0		1.0			Limits	_
ANALYTE	Result ppmv	RL ppmv	SPIKE AMT. ppmv	Result ppmv	% Rec.	Result ppmv	% Rec.	% RPD	Low %Rec	High %Rec	Max. RPD
Hydrogen Sulfide	ND	0.20	1.14	1.11	98	1.15	101	2.9	70	130	30
ND - Not Detected (Indian DIX											

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date <u>03-18-34</u>

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/05/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

Lab No.:	R03051	11-01	Ī	-			
Client Sample I.D.:		Pilot Effluent TO15					
Date/Time Sampled:	3/1/24	3/1/24 8:45		-			
Date/Time Analyzed:	3/14/24	18:04					
QC Batch No.:	240314N	IS2A1					
Analyst Initials:	VN	1					
Dilution Factor:	2.5	5					
	Result	RL	İ			i i	
ANALYTE	ppbv	ppbv	ł				
Dichlorodifluoromethane (12)	ND	2.5					<u> </u>
Chloromethane	ND	2.5					
1,2-Cl-1,1,2,2-F ethane (114)	ND	2.5					
Vinyl Chloride	ND	2.5					
Bromomethane	ND	2.5					
Chloroethane	ND	13					
Trichlorofluoromethane (11)	ND	2.5					
1,1-Dichloroethene	ND	2.5					
Carbon Disulfide	4.3	2.5					
1,1,2-Cl 1,2,2-F ethane (113)	ND	2.5					
Acetone	ND	13					
Methylene Chloride	ND	2.5					
t-1,2-Dichloroethene	ND	2.5					
1,1-Dichloroethane	ND	2.5					
Vinyl Acetate	ND	2.5					
c-1,2-Dichloroethene	ND	2.5					
2-Butanone	ND	13					
t-Butyl Methyl Ether (MTBE)	ND	2.5					
Chloroform	ND	2.5					
1,1,1-Trichloroethane	ND	2.5					
Carbon Tetrachloride	ND	2.5					
Benzene	ND	2.5					
1,2-Dichloroethane	ND	2.5					
Trichloroethene	ND	2.5					
1,2-Dichloropropane	ND	2.5					
Bromodichloromethane	ND	2.5					
c-1,3-Dichloropropene	ND	2.5					
4-Methyl-2-Pentanone	ND	2.5					
Toluene	7.0	2.5					
t-1,3-Dichloropropene	ND	5.1					

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/05/24
Matrix: Air
Reporting Units: ppbv

EPA Method TO15

Lab No.:	R03051	1-01			<u> </u>	
Client Sample I.D.:		Pilot Effluent TO15				
Date/Time Sampled:	3/1/24	3/1/24 8:45				
Date/Time Analyzed:	3/14/24	3/14/24 18:04				-
QC Batch No.:	240314N	240314MS2A1				
Analyst Initials:	VN	1				
Dilution Factor:	Dilution Factor: 2.5					
ANALYTE	Result ppbv	RL ppbv				
1,1,2-Trichloroethane	ND	2.5				
Tetrachloroethene	ND	2.5				
2-Hexanone	ND	2.5				
Dibromochloromethane	ND	2.5				
1,2-Dibromoethane	ND	2.5				
Chlorobenzene	ND	2.5				
Ethylbenzene	ND	2.5				
p,&m-Xylene	ND	5.1				
o-Xylene	ND	2.5				
Styrene	ND	2.5				
Bromoform	ND	2.5				
1,1,2,2-Tetrachloroethane	ND	2.5				
Benzyl Chloride	ND	2.5				
4-Ethyl Toluene	ND	2.5				
1,3,5-Trimethylbenzene	ND	2.5				
1,2,4-Trimethylbenzene	ND	2.5_				
1,3-Dichlorobenzene	ND	2.5		 		
1,4-Dichlorobenzene	ND	2.5				
1,2-Dichlorobenzene	ND	2.5				
1,2,4-Trichlorobenzene	ND	5.1				
Hexachlorobutadiene	ND	2.5	<u> </u>			

RL = Reporting Limit

ND = Not Detected (below RL)

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date <u>03-19-24</u>

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

 Project No.:
 22611059.09

 Date Received:
 03/05/24

 Matrix:
 Air

Reporting Units: ppbv

EPA Method TO15

Lab No.:	METHOD	BLANK	1		<u> </u>		T	
240 110							-	
Client Sample I.D.:			1					
Date/Time Sampled:								
Date/Time Analyzed:	3/14/24	11:51						
QC Batch No.:	240314N	IS2A1						
Analyst Initials:	VN	1					 	
Dilution Factor:	0.2	0						
	Result	RL						
ANALYTE	ppbv	ppbv	ł					
Dichlorodifluoromethane (12)	ND	0.20						
Chloromethane	ND	0.20						
1,2-Cl-1,1,2,2-F ethane (114)	ND	0.20						
Vinyl Chloride	ND	0.20						
Bromomethane	ND	0.20						
Chloroethane	ND	1.0						<u> </u>
Trichlorofluoromethane (11)	ND	0.20						1
1,1-Dichloroethene	ND	0.20						
Carbon Disulfide	ND	0.20						
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.20						
Acetone	ND	1.0						
Methylene Chloride	ND	0.20						
t-1,2-Dichloroethene	ND	0.20						
1,1-Dichloroethane	ND	0.20						
Vinyl Acetate	ND	0.20						
c-1,2-Dichloroethene	ND	0.20						
2-Butanone	ND	1.0						
t-Butyl Methyl Ether (MTBE)	ND	0.20						
Chloroform	ND	0.20						
1,1,1-Trichloroethane	ND	0.20						
Carbon Tetrachloride	ND	0.20						
Benzene	ND	0.20						
1,2-Dichloroethane	ND	0.20						
Trichloroethene	ND	0.20						
1,2-Dichloropropane	ND	0.20						
Bromodichloromethane	ND	0.20						
c-1,3-Dichloropropene	ND	0.20		ļl				
4-Methyl-2-Pentanone	ND	0.20		<u> </u>				
Toluene	ND	0.20						
t-1,3-Dichloropropene	ND	0.40						

Attn: Allen Prince

Project Name: Pure Muskegon - Methane Investigation

Project No.: 22611059.09
Date Received: 03/05/24
Matrix: Air

Reporting Units: ppbv

EPA Method TO15

Lab No.:	METHOD	BLANK				
Client Sample I.D.:						
Date/Time Sampled:						
Date/Time Analyzed:	3/14/24	3/14/24 11:51				
QC Batch No.:	240314N	240314MS2A1				
Analyst Initials:	VN	VM				
Dilution Factor:	0.2	0.20				
	Result	RL				
ANALYTE	ppbv	ppbv				
1,1,2-Trichloroethane	ND	0.20				
Tetrachloroethene	ND	0.20				
2-Hexanone	ND	0.20				
Dibromochloromethane	ND	0.20				
1,2-Dibromoethane	ND	0.20				
Chlorobenzene	ND	0.20				
Ethylbenzene	ND	0.20				
p,&m-Xylene	ND	0.40				
o-Xylene	ND	0.20				
Styrene	ND	0.20				
Bromoform	ND	0.20				
1,1,2,2-Tetrachloroethane	ND	0.20				
Benzyl Chloride	ND	0.20				
4-Ethyl Toluene	ND	0.20				
1,3,5-Trimethylbenzene	ND	0.20				
1,2,4-Trimethylbenzene	ND	0.20				
1,3-Dichlorobenzene	ND	0.20				
1,4-Dichlorobenzene	ND	0.20				
1,2-Dichlorobenzene	ND	0.20				
1,2,4-Trichlorobenzene	ND	0.40				
Hexachlorobutadiene	ND	0.20				

RL = Reporting Limit

ND = Not Detected (below RL)

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date <u>13-14-24</u>

The cover letter is an integral part of this analytical report

R030511.xlsx

LCS/LCSD Recovery and RPD Summary Report

QC Batch #: 240314MS2A1

Matrix: Air Reporting Units: ppbv

EPA Method TO15 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	МЕТНО	D BLANK		L	CS	Lo	CSD		T -		
Date/Time Analyzed:	3/14/2	4 11:51		3/14/2	3/14/24 10:33		4 11:12	1			
Analyst Initials:	VM		1	V	M		M -	1			
Dilution Factor:	0	.20		1	.0	1	.0				
ANALYTE	ANALYTE Result ppbv RL ppbv		AMT. ppbv	Result ppbv	% Rec.	Result ppbv % Rec.		RPD	Low %Rec	High %Rec	Max. RPD
1,1-Dichloroethene	ND	0.20	10	10.2	102	10.3	103	1.7	70	130	30.0
Methylene Chloride	ND	0.20	10	10.8	108	10.2	102	5.4	70	130	30.0
Trichloroethene	ND	0.20	10	10.6	106	10.5	105	0.7	70	130	30.0
Toluene	ND	0.20	10	10.9	109	10.9	109	0.5	70	130	30.0
1,1,2,2-Tetrachloroethane	ND	0.20	10	10.7	107	10.6	106	0.6	70	130	30.0

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Annile Stle Sancher for

Operations Manager

The cover letter is an integral part of this analytical report

Date: 03-19-24

Appendix C
Preliminary Air Emissions Estimate
2024 Supplemental Methane Investigation
2400 Lakeshore Drive, Muskegon, MI
Pure Muskegon, LLC

A. GENERAL:

(1).	Discharge Pipe Diameter	4	INCH
(2).	Flow Velocity	2292	FPM
(3).	Extraction Rate	200	SCFM
(4).	Blower Developed Pressure	10.0	"W.C.

B. ESTIMATED COMPOSITION OF EXTRACTED SOIL VAPOR AND MASS EMISSION RATES:

	Constituent	CAS#	Measured Laboratory Off-Gas Concentration (ug/m³)		<u>IRSL</u>	Emission Rate (lb/mon) ITSL	Emission Rate (lb/mon) ITSL	VOC/TAC Estimated Mass Emission Rate (lb/mon) IRSL >/= 0.04	
(1).	Acetone	67-64-1	154.4	5900		0.08	0.0	0.0	0.0
(2).	Carbon Disulfide	75-15-0	40.5	700		0.02	0.0	0.00	0.0
(3).	Methyl Ethyl Ketone (2-Butanone)	78-93-3	648.8	5000		0.4	0.0	0.00	0.0
(4).	Toluene	108-88-3	26.38	5000		0.01	0.0	0.00	0.0
					Total VOC/TAC Estimated Mass				
					Emission Rate (lb/mon)	0.5	0.00	0.00	0.0
					Uncontrolled Exemption Threshold				
					(lb/mon)	1000	20	20	(

Notes

^{1.} Emissions estimates were based on maximum flowrate observed during pilot. Concentrations of constituents based on maximum values from soil gas sampling results in "Table 2 - Summary of Soil Gas Extraction Pilot Off-Gas Results", converted to ug/m^3 at 25 degrees C and 1 atm.

^{2.} Blower pressure was estimated from the extraction rate, VFD setting, and fan curve for the OBAR GBR-89 (120-V).